Necklaces and subset-sums: How can they be related?
Swee Hong Chan
Cornell University

\begin{align*}
\text{Necklace 1:} & \quad \{0\} \\
\text{Necklace 2:} & \quad \{2, 3\} \\
\text{Necklace 3:} & \quad \{1, 4\} \\
\text{Necklace 4:} & \quad \{0, 1, 4\}
\end{align*}
105. (a) [3–] Let \(n \in \mathbb{P} \), and let \(f(n) \) denote the number of subsets of \(\mathbb{Z}/n\mathbb{Z} \) (the integers modulo \(n \)) whose elements sum to 0 in \(\mathbb{Z}/n\mathbb{Z} \). For instance, \(f(4) = 4 \), corresponding to \(\emptyset, \{0\}, \{1, 3\}, \{0, 1, 3\} \). Show that

\[
f(n) = \frac{1}{n} \sum_{\substack{d \mid n \\text{odd}}} \phi(d) 2^{n/d},
\]

where \(\phi \) denotes Euler’s totient function.

(b) [5–] When \(n \) is odd, it can be shown using (a) (see Exercise 7.112) that \(f(n) \) is equal to the number of necklaces (up to cyclic rotation) with \(n \) beads, each bead colored black or white. Give a combinatorial proof. (This is easy if \(n \) is prime.)
Necklaces with two colors

Necklaces are rotationally invariant.
Subsets of \mathbb{Z}_n that sums to 0 (modulo n)

Let $n = 5$.

Example:
- $\{0, 1, 4\}$; $0 + 1 + 4 = 5 = 0 \mod 5$.
- $\{1, 2, 3, 4\}$; $1 + 2 + 3 + 4 = 10 = 0 \mod 5$.

Non-example:
- $\{1, 3, 4\}$; $1 + 3 + 4 = 8 = 3 \mod 5$.
- $\{0, 1, 2, 3\}$; $0 + 1 + 2 + 3 = 6 = 1 \mod 5$.
The theorem

Theorem (EC1, 1.105(a))

If \(n \) is odd, then:

\[
\text{\# of necklaces of length } n \text{ with two colors} = \text{\# of subsets of } \mathbb{Z}_n \text{ that sums to 0}.
\]

Proof in EC 1 uses orbit-counting theorem and generating function. Stanley then asked for a combinatorial proof.
The theorem

Theorem (EC1, 1.105(a))

If \(n \) is odd, then:

\[
\text{# of necklaces of length } n \text{ with two colors} = \text{# of subsets of } \mathbb{Z}_n \text{ that sums to 0}.
\]

We will give a combinatorial proof to this theorem.
Proof in EC1

Orbit-counting theorem: For a group G acting on a set X,

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

For $G = \mathbb{Z}_n$ and $X =$ set of strings of length n with two colors,

$$\# \text{ of necklaces of length } n \text{ with two colors} = \frac{1}{n} \sum_{d | n} 2^{n/d} \phi(d).$$

Euler's totient function.
For any complex n-th root of unity $\zeta := e^{2\pi i/n},$

$$(1 + \zeta)(1 + \zeta^2) \cdots (1 + \zeta^n) = c_0 + c_1\zeta + \cdots + c_{n-1}\zeta^{n-1}.$$

By summing over all n-th roots of unity,

$$\sum_{d|n \atop d \text{ odd}} 2^{n/d} \phi(d) = n \left(\text{\# of subsets of } \mathbb{Z}_n \text{ that sums to 0} \right).$$
Proof in EC1 (ctd)

If n is odd, then:

$$\text{# of necklaces of length } n \text{ with two colors} = \text{# of subsets of } \mathbb{Z}_n \text{ that sums to 0},$$

and is equal to

$$\frac{1}{n} \sum_{d|n} 2^{n/d} \phi(d).$$

Questions unanswered by this proof:

- How are they related?
- Why odd n?
View necklaces as polynomials

The necklace

\[\{1 + X^2, X + X^3, X^2 + X^4, X^3 + 1, X^4 + X\} \subset \mathbb{F}_2[X]/(X^5 - 1), \]

which is equal to:

\[\{X^k(1 + X^2) \mid 0 \leq k < 5\}. \]
Facts that we will use

For odd n, fix a primitive n-th root of unity ω over \mathbb{F}_2. Write

$$C_i := \{s_i, 2s_i, \ldots, 2^{\ell_i - 1}s_i\} \subset \mathbb{Z}_n$$ \hspace{1cm} (cyclotomic coset)

$$P_i(X) := (X - \omega^{s_i})(X - \omega^{2s_i}) \cdots (X - \omega^{2^{\ell_i - 1}s_i}) \in \mathbb{F}_2[X].$$

Facts:

- $X^n - 1$ factors into irreducible polynomials $P_1(X) \cdots P_m(X)$;
- $(\mathbb{F}_2[X]/P_i(X))^\times$ is isomorphic to the cyclic group $\mathbb{Z}_{2^{\ell_i - 1}}$.

Example:

$$X^5 - 1 = (X + 1)(\underbrace{1 + X + X^2 + X^3 + X^4}_{P_1(X)}),$$

$$(\mathbb{F}_2[X]/P_1(X))^\times \simeq \mathbb{Z}_1; \quad (\mathbb{F}_2[X]/P_1(X))^\times \simeq \mathbb{Z}_{15}.$$
The bijection for $n = 5$

Necklaces divisible by $P_1(X)$ but not $P_2(X)$ ↔ Nonempty subsets of $\{1, 2, 3, 4\}$ that sums to 0.

\[\{X^k(1 + X^2) \mid 0 \leq k < 5\} \]
An example of the bijection

\[\{X^k(1 + X^2) \mid 0 \leq k < 5\}. \]

Take \(1 + X^3\) as the group generator of \((\mathbb{F}_2[X]/P_2(X))^{\times}\),

\[\{(1 + X^3)^{9k}(1 + X^3)^4 \mid 0 \leq i < 5\} \mod P_2(X) \]

Viewing \((\mathbb{F}_2[X]/P_2(X))^{\times}\) as the group \(\mathbb{Z}_{15}\),

\[\{9k + 4 \mid 0 \leq k < 5\} \subset \mathbb{Z}_{15}. \]

This gives us

\[\{4, 13, 7, 1, 10\}. \]
An example of the bijection (ctd)

\[\{ 4, 13, 7, 1, 10 \} . \]

Take the quotient and the remainder of division by 3:

\[\{ 3 \cdot 1 + 1 , 3 \cdot 4 + 1 , 3 \cdot 2 + 1 , 3 \cdot 0 + 1 , 3 \cdot 3 + 1 \} \]

Exchange the quotient with the remainder, then change 3 to 5:

\[\{ 5 \cdot 1 + 1 , 5 \cdot 1 + 4 , 5 \cdot 1 + 2 , 5 \cdot 1 + 0 , 5 \cdot 1 + 3 \} \]

This gives us:

\[\{ 6, 9, 7, 5, 8 \} . \]

Take the unique subset of \{1, 2, 4, 8\} that sums to 5 mod 15:

\[\{ 1, 4 \} . \]
The bijection for necklaces coprime only to $P_i(X)$

Input: Necklaces coprime only to $P_i(X) = (X - \omega^{s_i}) \ldots (X - \omega^{2^{\ell_i-1}s_i})$.
Output: Nonempty subset of $\{s_i, \ldots, 2^{\ell_i-1}s_i\}$ that sums to 0 mod n.

Algorithm:
(1) View necklace as subset of $(\mathbb{F}_2[X]/P_i(X))^\times = \mathbb{Z}_{2^{\ell_i-1}}$;
(2) Take the quotient and remainder of division by $\frac{(2^{\ell_i-1}) \gcd(s_i,n)}{n}$;
(3) Exchange quotient with remainder;
(4) Change $\frac{(2^{\ell_i-1}) \gcd(s_i,n)}{n}$ to $\frac{n}{\gcd(s_i,n)}$;
(5) Take the unique number that is divisible by $\frac{n}{\gcd(s_i,n)}$;
(6) Output is the unique nonempty subset of $\{s_i, \ldots, 2^{\ell_i-1}s_i\}$ that sums to the number.
How about other necklaces?

Input: A necklace of length \(n \) with two colors.
Output: Subsets of \(\mathbb{Z}_n \) that sums to 0 mod \(n \).

Algorithm:
(1) View necklaces as elements of \(\frac{\mathbb{F}_2[X]}{P_1(X)} \times \frac{\mathbb{F}_2[X]}{P_2(X)} \times \ldots \times \frac{\mathbb{F}_2[X]}{P_k(X)} \);
(2)-(5) Apply analogous steps to \(\mathbb{Z}_{2^{\ell_1}-1} \times \mathbb{Z}_{2^{\ell_2}-1} \times \ldots \times \mathbb{Z}_{2^{\ell_k}-1} \);
(6) Output is a subset of \(\mathbb{Z}_n \) viewed as \(C_1 \cup C_2 \cup \ldots \cup C_k \).
Conclusion

Theorem

If n is odd, then:

$$\sum_{I \subseteq \{1, \ldots, m\}} \frac{\text{gcd}(n, (s_i)_{i \in I})}{n} \prod_{i \in I} (2^{\ell_i} - 1).$$

This formula is different from (EC1)'s $\frac{1}{n} \sum_{d \mid n} 2^{n/d} \phi(d)$.
Conclusion

Theorem

If \(n \) is odd, then:

\[
\text{\# of necklaces of length } n \text{ with two colors} = \text{\# of subsets of } \mathbb{Z}_n \text{ that sums to 0},
\]

and is equal to

\[
\sum_{I \subseteq \{1, \ldots, m\}} \frac{\gcd(n, (s_i)_{i \in I})}{n} \prod_{i \in I} (2^{\ell_i} - 1).
\]

Q: Why odd \(n \)?

- Reason 1: so \(\mathbb{F}_2[X]/P_1(X), \ldots, \mathbb{F}_2[X]/P_m(X) \) are finite fields;
- Reason 2: so \(C_1, \ldots, C_m \) form a partition of \(\mathbb{Z}_n \).
Conclusion

Theorem

If n is odd, then:

$$\text{# of necklaces of length } n \text{ with two colors} = \text{# of subsets of } \mathbb{Z}_n \text{ that sums to 0},$$

and is equal to

$$\sum_{I \subseteq \{1, \ldots, m\}} \frac{\gcd(n, (s_i)_{i \in I})}{n} \prod_{i \in I} (2^{\ell_i} - 1).$$

Q: How are those two sets related?

A: They are both secretly a union of products of cyclic groups.
What is next?

Bijection that preserves the number of blue beads?

Possible leads to answering this mystery:

- Number of necklaces with k blue beads is as an evaluation of an arithmetic Tutte Polynomial (Ardila-Castilo-Henley ’15).
- Also the number of components in a chamber of the coroot toric arrangement of type A (Aguiar, C. ’17).
Why stop at two colors?

Theorem

If q and n are coprime, then:

\[
\text{# of necklaces of length } n \text{ with } q \text{ colors} = \text{# of multi-subsets of } \mathbb{Z}_n \text{ with mult. } < q \text{ that sums to 0},
\]

and is equal to

\[
\sum_{I \subseteq \{1, \ldots, m\}} \frac{\gcd(n, (s_i)_{i \in I})}{n} \prod_{i \in I} (q^{\ell_i} - 1).
\]

The proof is bijective if q is prime power.

Bijective proof for the rest of the values of q?
THANK YOU!

⇒ {4,13,7,1,10} ⇒ {6,9,7,5,8} ⇒ {1,4}

Email: sweehong@math.cornell.edu