4. One direction is trivial, since if \(f \) is continuous, and \(B \) is a basis set in \(Y \), then \(B \) is open, so \(f^{-1}(B) \) is open in \(X \). Conversely, suppose \(f^{-1}(B) \) is open in \(X \) for every \(B \in \mathcal{B} \). For \(U \) an arbitrary open subset of \(Y \) we have some

\[
\{B_\alpha\}_\alpha \subset \mathcal{B}
\]

so that

\[
U = \bigcup_\alpha B_\alpha
\]

and hence

\[
f^{-1}U = f^{-1}\bigcup_\alpha B_\alpha = \bigcup_\alpha f^{-1}B_\alpha,
\]

because inverse image of a map commutes with union. Therefore, \(f^{-1}(U) \) is the union of open sets, and so is open. This shows \(f \) is continuous.

5. (a) By 4. it is enough to show the inverse image of basis sets are open. Let \((a, b) \subset \mathbb{R}\) be an open interval. Then

\[
f^{-1}((a, b)) = \{(x, y) \in \mathbb{R}^2 \mid a < x + y < b\}.
\]

Consider the topology on \(\mathbb{R}^2 \) generated by sets

\[
\{(x, y) \mid |x - x_0| + |y - y_0| < \epsilon \mid \epsilon > 0, \ (x_0, y_0) \in \mathbb{R}^2\}.
\]

By problem 2 on homework set 2 this generates the usual topology. For a point \((x_0, y_0)\) so that \(a < x_0 + y_0 < b \), let

\[
\epsilon = \min\{x_0 + y_0 - a, b - (x_0 + y_0)\}.
\]
Then the ball in this metric (recall it looks like a diamond) centered at
\((x_0, y_0)\), of radius \(\epsilon\) is contained in \(f^{-1}((a, b))\), so \(f\) is continuous.

(b) Similarly to (a), take some \((x_0, y_0)\) in \(\mathbb{R}^2\) so that \(x_0y_0 \in (a, b) \subset \mathbb{R}\).

Suppose, first, that \(x_0, y_0\) is off the axis, so neither coordinate is 0.
Let \(B_\epsilon\) be an open square, centered at \((x_0, y_0)\), with side lengths of \(2\epsilon\),
chosen small enough to be contained in the quadrant that \((x_0, y_0)\) is in.
If \((x_0, y_0)\) is in the first quadrant, then the image of \(B_\epsilon\) under \(f\) is

\[
(x_0y_0 - (x_0 + y_0)\epsilon + \epsilon^2, x_0y_0 + 2\epsilon + \epsilon^2).
\]

Clearly \(\epsilon\) can be chosen small enough so that this interval is contained
in \((a, b)\), hence this square is contained in \(f^{-1}((a, b))\), and since the
square is a standard product basis set, and \(\mathbb{R}^2\) has the topology of a
product, such a square is open, so that \(f\) is continuous.

If \((x_0, y_0)\) is in the second quadrant, then the image of \(B_\epsilon\) under \(f\) is

\[
(x_0y_0 + \epsilon y - x\epsilon - \epsilon^2, x_0y_0 - \epsilon y + x\epsilon - \epsilon^2),
\]

and the proof goes through in the same way.

If \((x_0, y_0)\) is on a coordinate axis, then \(\epsilon\) can be chosen so that \(B_\epsilon\) is
arbitrarily close to 0, (i.e., contained in an arbitrarily small neighborhood around 0), in exactly the same way, and the proof goes through
as above.