Math 4530 — Topology. Homework 5

Due in class on 29nd September, 2009.

Please declare any collaborations with classmates; if you find solutions in books or on-line, acknowledge your sources — in either case, write your answers in your own words.

Please attempt all questions and justify your answers.

1. [For class discussion — from Hatcher.] Show that \(\mathbb{R} \) with the cofinite topology is compact.

2. [For class discussion — from Hatcher.] Show that if \(A \) and \(B \) are compact subspaces of a space \(X \), then so is \(A \cup B \). If, in addition, \(X \) is Hausdorff, show that \(A \cap B \) is compact.

3. [For class discussion — from Hatcher.] Show that if \(X \) is compact and \(f : X \to \mathbb{R} \) is continuous, then \(f \) is bounded and takes on a minimum and a maximum value.

4. [From Munkres.] If \(A \) is a connected subspace of \(X \), does it follow that \(\text{Int} A \) and \(\partial A \) are connected? Does the converse hold?

5. [From Hatcher.] Consider the set (known as the orthogonal group) \(O(n) \) consisting of all \(n \times n \) orthogonal matrices — that is, the \(n \times n \) matrices whose columns form an orthonormal basis \(v_1, \ldots, v_n \) for \(\mathbb{R}^n \). We put a topology on \(O(n) \) by regarding it as a subspace of \(\mathbb{R}^{n^2} \), taking the \(n^2 \) entries of a matrix in \(O(n) \) as the coordinates of a point in \(\mathbb{R}^{n^2} \).

 (a) Show that \(O(n) \) is a closed subset of \(\mathbb{R}^{n^2} \) by considering the dot products \(v_i \cdot v_j \) of the columns of matrices in \(O(n) \) as functions \(\mathbb{R}^{n^2} \to \mathbb{R} \).

 (b) Show that \(O(n) \) is compact.

TRR