Math 4530 — Topology. Homework 4

Due in class on 22nd September, 2009.

Please declare any collaborations with classmates; if you find solutions in books or on-line, acknowledge your sources — in either case, write your answers in your own words.

Please attempt all questions and justify your answers.

1. [For class discussion.] Prove that the following characterisations of connectedness of a topological space \(X \) are equivalent.
 (a) Whenever \(X \) is expressed as the disjoint union \(U \sqcup V \) of two open subsets, one of \(U \) and \(V \) is empty.
 (b) There is no continuous surjection from \(X \) to the two-point space \(\{0, 1\} \) with the discrete topology.

2. [For class discussion — from Hatcher.] From the fact that an interval \([a, b]\) is connected, deduce the Intermediate Value Theorem: if \(f: [a, b] \to \mathbb{R} \) is continuous and \(f(a) < c < f(b) \) then there exists \(x \in [a, b] \) with \(f(x) = c \).

3. [For class discussion.]
 (a) [From Hatcher.] Show that if a space \(X \) has only finitely many connected components, then these components are open subsets of \(X \).
 (b) Give an example to show this result can fail when \(X \) has infinitely many connected components.

4. [From Hatcher.] Show that the subspace \(X \subset \mathbb{R}^2 \) consisting of all points \((x, y)\) such that at least one of \(x \) and \(y \) is rational, is connected.

5. Sort the following topological spaces into equivalence classes under homeomorphism. Unless otherwise stated, \(\mathbb{R} \) and \(\mathbb{R}^2 \) have their usual topologies, as does the complex plane (identify \(\mathbb{C} \) with \(\mathbb{R}^2 \)). Please fully justify your answer. When writing down an explicit homeomorphism is awkward, an informal description will suffice.
 (A) \(\mathbb{R} \),
 (B) \(\mathbb{R} \) with the cofinite topology — that is, \(U \subset \mathbb{R} \) is open when either \(U = \emptyset \) or \(\mathbb{R} \setminus U \) is finite,
 (C) \(\mathbb{Q} \) with the subspace topology inherited from \(\mathbb{R} \),
 (D) \(\mathbb{Q} \) with the discrete topology,
 (E) \(\mathbb{Z} \) with the subspace topology inherited from \(\mathbb{R} \),
 (F) \((0, 1) \) with the subspace topology inherited from \(\mathbb{R} \),
 (G) \(D^2 = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1 \} \) with the subspace topology inherited from \(\mathbb{R}^2 \),
 (H) \(\{ (x, y) \in \mathbb{R}^2 \mid x^2 - y^2 = 1 \} \) with the subspace topology inherited from \(\mathbb{R}^2 \),
 (I) \([0, 1]^2 \subset \mathbb{R}^2 \) with the subspace topology inherited from \(\mathbb{R}^2 \),
 (J) \(\{ (x, \sin \frac{1}{x}) \mid x > 0 \} \subset \mathbb{R}^2 \) with the subspace topology inherited from \(\mathbb{R}^2 \),
 (K) the letter \(Y \) — or, more formally, the subspace \(S_0 \cup S_{2\pi/3} \cup S_{4\pi/3} \) of the complex plane, where \(S_\theta := \{ re^{i\theta} \mid 0 \leq r < 1 \} \).