Math 4530 — First Midterm Exam — Brief solutions

1. (a) It suffices to show that if \(a \) and \(b \) are in \(X \) then there is a path from \(f(a) \) to \(f(b) \) in \(f(X) \).

 Well, as \(X \) is path connected, there is a path \(\gamma : [0,1] \to X \) from \(a \) to \(b \). As the composition of two continuous functions is again continuous, \(f \circ \gamma \) is a path in \(f(X) \), and it runs from \(f(a) \) to \(f(b) \).

 (b) Points on the sphere are parametrized by a pair of angles \(\theta \in \mathbb{R} \) and \(\phi \in (-\pi/2, \pi/2) \), via a continuous map from \([0,2\pi] \times \mathbb{R} \) into \(S^2 \). As \([0,2\pi] \times (-\pi/2, \pi/2) \) is path-connected, so is \(S^2 \).

2. This is “bookwork” — please look it up in lecture notes, or in a textbook!

3. (a) A subset \(A \) of a topological space \(X \) is connected when it is connected in the subspace topology on \(A \) — that is, whenever \(A \) is the disjoint union of two subsets \(U \) and \(V \) that are open in \(A \), one of \(U \) and \(V \) must be empty.

 (b) i. If \(A \) and \(B \) are connected subsets of a topological space and \(A \cap B \neq \emptyset \), then \(A \cup B \) is connected — this is a special case of a result proved in lectures.

 ii. If \(A \) is the line \(y = 0 \) in the plane and \(B \) is the circle \(S^1 \), then both \(A \) and \(B \) are connected, but their intersection is \(\{(1,0), (-1,0)\} \), which is not connected.

4. (a) The subset \(\{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1 \text{ and } x > 0\} \) of \(\mathbb{R}^3 \) (with the usual topology) is not compact, by the Heine–Borel Theorem, since it is not closed.

 (b) The set \(\{1,2,\ldots,n\} \) with the discrete topology is compact since there are only finitely many open sets in the topology.

 (c) The subset \(\mathbb{R} \) of \(\mathbb{R} \) where \(\mathbb{R} \) has the topology that has basis \(\{(a,b) \mid a, b \in \mathbb{R}, a < b\} \) is not compact. For example \([1,2] \) together with the sets \([0,1 - 1/n] \) for \(n = 2, 3, \ldots \) form an open cover with no finite subcover.

 (d) The subset \(\mathbb{Z} \) of \(\mathbb{R} \) where \(\mathbb{R} \) has the topology in which sets are open when they are empty or have countable complement is not compact. For example, the sets \((\mathbb{R} \setminus \mathbb{Z}) \cup \{n\}\), with \(n \) ranging over \(\mathbb{Z} \), forms an open cover with no finite subcover.

TRR, October 2009