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Abstract. Geometrical dynamics is the study of the geometry of the orbits in configuration space of
a dynamical system without reference to the system’s motion in time.

Generalized coordinates for the circular restricted problem of three bodies are taken as polar
coordinates r, 8 centered at the triangular libration point Ls. A time-independent nonlinear second
order ordinary differential equation for » as a function of 8 is derived. Approximations to periodic
solutions are obtained by perturbations and Fourier series.

1. Introduction

Geometrical dynamics is the study of the geometry of the orbits in configuration space
of a dynamical system without reference to the system’s motion in time.

For holonomic, scleronomous, conservative systems, a set of time-independent
equations which describe the orbit may be obtained from Jacobi’s form of the prin-
ciple of least action (Goldstein, 1950, p. 232). For such systems having two degrees of
freedom a single second order ordinary differential equation results. It has been inde-
pendently derived by several authors (Whittaker, 1964, p. 389; Kauderer, 1958, p. 599;
Knothe, 1964, p. 65) and has been the subject of several investigations in the area of
nonlinear normal mode vibrations (Rosenberg, 1964; Rosenberg and Kuo, 1964;
Rand, 1971).

If the dynamical system has two degrees of freedom but is rheonomous or is non-
conservative then the aforementioned equation no longer holds. A method for deriving
a similar equation for nonconservative systems has been presented (Jones, 1970).

The circular restricted problem of three bodies is rheonomous but Hamiltonian
conserving (Goldstein, 1950, p. 55fn.). The kinetic energy in a coordinate system
rotating with the primaries is not a homogeneous quadratic function of the generalized
velocities (Goldstein, 1950, p. 23) and therefore Jacobi’s form of the principle of least
action is inapplicable (Goldstein, 1950, p. 232). Nonetheless the system has two degrees
of freedom and a single time-independent second order ordinary differential equation
describing the orbit of the third body can be derived by using the conservation of the
Hamiltonian (Whittaker, 1964, p. 64). This equation has been presented for generalized
coordinates taken as cartesian coordinates rotating with the primaries (Szebehely,
1967, p. 48).

In this work generalized coordinates for the circular restricted problem of three
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bodies are taken as polar coordinates r, 8 centered at the triangular libration point L,.
A time-independent nonlinear second order ordinary differential equation for r as a
function of 6 is derived. Approximations to periodic solutions are obtained by pertur-
bations and Fourier series. These solutions represent periodic orbits around L,.

Periodic orbits around L, have been the subject of other investigations (Szebehely,
1967; Pederson, 1935; Deprit and Delie, 1965) based on the usual dynamical ap-
proach in which time appears as an independent variable. It is the purpose of this
work to suggest, through geometrical dynamics, an alternative approach.

2. Derivation of the Geometrical Dynamics Equation

The equations of motion for the circular restricted problem of three bodies in the
usual dimensionless barycentric synodic coordinates x, y are (Szebehely, 1967, p.18)

X—2p—x=—V,

JH2—y=—V, M
where

V=—0=p)r,—plr, )

ri=(x—-u’+y : @)

r3=(x+1—p)*+ .

Here V is the gravitational potential energy of the primaries and u is the ratio of the
mass of the smaller primary to the total mass of the primaries. The coordinate system
rotates in a Newtonian inertial frame with dimensionless angular velocity unity.

In order to obtain the equations of motion in terms of polar coordinates r, 8 centered
at L,, set

x=a+rcos(f + a)

y=b+rsin(@+a) @)
where
a=p—1/2
b=./32 ©)

tan2a = \/3(1 - 2y).

Here (a, b) is the triangular libration point L,. Principal coordinates result from the
rotation through angle o (Szebehely, 1967, p. 254).
Equations (1) become

F-rf?—2r0=-1U,
6+ 2ri(@+1)=-U, ©)
where
U(r,0)=V —r*/2—r[acos(8 + «) + bsin(8 + a)]. Q)
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Equations (6) admit the first integral
FPR+r%2+U=nh 8)

where 4 is a constant.
Now consider r as a function of 8 only.

Then

F=rb 9

F= 10?4 10 @
where primes denote differentation with respect to 8. Solving(6)for #and 4, replacing
i wherever it appears by r’d, solving (8) for § and finally substituting all of these
results into the second of (9) gives

2(h=U)(—rr"+r+2r) —2[2(h - U)]"* [P + ]2 +

+ (P +r)(=rU,+([r)Ug)=0. (10)

Here it has been assumed that <0 for periodic orbits around L, (Szebehely, 1967;
Pederson, 1935; Deprit and Delie, 1965).

3. An Approximate Solution
Expanding U(r, 0) in a power series in r,

U=—1+rg(8) + r*f(6) + 0(*) ‘ an
where _
g(6) = (3/4) (= 1 + 4 cos 26) (12)

161 (6) = 3/3sin (8 + @) — 3 (1 — 2u) cos (0 + ) +
+10(1 - 20)cos3(@+a)  (13)
A=[1-=3u(1—p]". | (14

It is well known that if terms of 0(r3) are neglected in U, then there exists an
elliptic solution to (10) of the form (Szebehely, 1967, p. 258)

r?* = M/(N + cos20) 15)

where M and N are constants. Substituting (15) into (10) and neglecting 0(r?)
in (11), find

M =—16|h + 1]/34 (94> — 8)'/2 (16)
N =—T[4+ (9% - 8)"2 sgn(h + 1)]/34. (17

Note that there is exactly one periodic orbit (15) for given values of & and pu.
The value h=—1 corresponds to the equilibrium solution L,. Values of A> —1
(< —1)correspond to the so called short (long) period orbits (Szebehely, 1967, p. 258).
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The condition that M and N be real,

942 —8>0 (18)
is equivalent to the usual stability criterion,

p(l —p)<1/27. (19

In order to find periodic solutions to (10) when higher order terms are included
in U, note that, from (15)~(17), r=0 (|h+1]|"/?). This suggests setting

r(0) = [M/(N + c0s260)]'/* + x, (0) & + x5 (0) & +-+- (20)
where
e=|h+ 12, (21)

Substituting the perturbation scheme of Equation (20) into (10) and (11) and
equating to zero coefficients of like powers of ¢, obtain a set of linearized differential
equations on the x,(0). After some algebra, the equation on x,(8) becomes

Fl(o)x,2’+F2(6)x’2+F3(0)x2=F4_(0) (22)
where

10

Fy(8)= Y ay,cosnb
n=0
10

F,(8)= Y a,,sinnd
n=2

10
F3(0)= Y aj,cosnf
n=0

7
Fu(8)= Y a,,cosnd + as,sinnd
n=1

nodd

where the a,, are known constants which depend on A and N only.
For a periodic solution to (22), it is sufficient to set

x,(8)= Y a,cosnf + b,sinnd. (23)
modd

Substituting the Fourier series (23) into (22) and equating to zero coefficients of
cosnf and sinnf, obtain a set of linear algebraic equations on the a, and b, respecti-
vely.

Periodic expressions for x3(6) and higher order terms could be found in a similar
fashion,

For given values of # and u there exists exactly one periodic orbit of the form (20),
an analytic continuation of the elementary orbit (15).
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As an example, consider the periodic orbit for 4=0.012 and A< —1 (long period).
It is approximated by the expression

r(8) = [— 6.586/(— 1.078 + cos 20)]"/% ¢ +
+ (—0.191 cos 6 + 14.888 sin 6 —
—0.034 cos 30 + 2.687 sin36 +---) &% +
+0(&). (24)

This orbit is shown in Figure 1 for A= —1.0009 (¢=0.03).

2

Fig. 1. Periodic orbit around L; for z =0.012 and # = —1.0009, Equation (24). The unit of length
is the distance between the primaries. The horizontal line is parallel to the line connecting the pri-
maries. The inclined line makes an angle a with the horizontal.
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