Fluid Dynamics of Phloem Flow: Part II
An Approximate Formula
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ABSTRACT

AN approximate formula is derived for the pressure
drop encountered by a viscous fluid as it flows
through a series of sieve tubes with sieve plates. The
derivation is based upon the known solution for low
Reynolds number conical flow. Our treatment offers an
improvement to the resistance formula currently used in
the plant physiology literature.

INTRODUCTION

The study of the fluid dynamics of flow in the phloem
tissue of plants is closely related to the largely
unanswered question of the mechanism of translocation.
In order to evaluate a particular translocation
mechanism, the biologist must be able to determine
whether the mechanism can generate, from physiological
considerations, enough of a pressure difference to drive
the fluid through the phloem tissue against pressure
losses due to viscous effects. Thus the biologist needs to
know the pressure drop encountered by fluid flowing
through a series of sieve tubes with periodically placed
sieve plates with pores (Fig. 1).

The approach which is usually taken in computing this
pressure drop is to apply Poiseuille’s law to the sieve tube
in series with N pores of the sieve plate in parallel. We
will call the resulting expression the resistance equation:
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where
Ap

pressure drop due to flow past one sieve tube
and one sieve plate, dyne/cm?

viscosity, g/cm-s

flow rate, cm?®/s

number of pores in sieve plate

sieve tube radius, cm

sieve pore radius, cm

sieve tube length, cm

sieve plate thickness, cm
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(See, e.g., Crafts and Crisp, 1971; Christy and Ferrier,
1973; Young, Evert and Eschrich, 1973; Tyree et al.,
1974; Aronoft, 1975; Housley and Fisher, 1977).

Equation [1] neglects some additional pressure drop
which occurs as the streamlines in the flow bend in the
region near the sieve tube-sieve plate interface (Tryee et
al., 1974). See Figs. 2a, 2b.
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FIG. 1 Longitudinal section of a sieve tube in
the neighborhood of a sieve plate showing
pores. (After Esau, 1965, p. 669).

In a previous paper (Rand and Cooke, 1978) we
developed a procedure for estimating the accuracy of the
resistance equation in the special (mathematically
simpler) case of a single axisymmetric circular pore (N =
1). We presented an analytical solution to the Navier-
Stokes equations for creeping flows which involved solv-
ing at least a hundred simultaneous algebraic equations.
Although this work was formally exact, its usefulness was
limited both by the complexity of the computational
algorithm as well as by the inapplicability of the model
(the N = 1 case is anatomically unrealistic).

The purpose of the present work is to supplement our
previous paper by providing a simple (though approx-
imate) equation which estimates the error involved in the
resistance equation [1]. The improved equation will be
shown to have the form

8 nQ 2 R*® ,
Ap=— — [L+= (=) ] + 2 (4p)
m R Nr

where Ap’ will be given later. Although the approximate
equation [1a] to be derived in this work has been veritied
only for the axisymmetric N = 1 case, we believe it
represents an improvement over the resistance equation
[1] in the general N-pore case as well.

In addition to the technical papers referenced in our
previous work (Rand and Cooke, 1978) we wish to add
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FIG. 2 Sketch of streamlines as assumed by various theories in the case
of a single pore: (a) resistance formula; (b) exact solution of Navier-
Stokes equations; (c) approximate formula of this paper.
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FIG. 3 The geometry of conical flow.

the paper of Lew and Fung (1971) who studied the N = 1
case in the limit £ = 0. They presented an analytical
solution upon which they based their numerical com-
putations which involved solving 20 simultaneous
algebraic equations. Their work was involved with
modeling the flow of blood in valved veins.

It is to be noted that we assume in this paper that the
sieve plate pores are open (i.e., they are not occluded by
P-protein filaments, cf. Spanner, 1978). Furthermore all
results presented are based on theoretical considerations
rather than experimental data.

The Model

In order to derive an approximation for the additional
pressure drop over the resistance equation [1] we will
assume the simplified flow pattern of Fig. 2c. That is, we
will replace the bending of the streamlines in the realistic
situation, Fig. 2b, by a region of conical flow. This
assumption represents a compromise between the
mathematically difficult situation of the Navier-Stokes
equations (Fig. 2b) and the more unrealistic flow
associated with the resistance equation (Fig. 2a). We
restrict discussion in this section to the single pore (N =
1) case, but return to consider the general N pore prob-
lem later.

After deriving an expression for the pressure drop
associated with the flow of Fig. 2c, we will compare our
results with the more exact (and more computationally
cumbersome) analysis presented in our previous paper
(Rand and Cooke, 1978).

We begin by computing the pressure drop in a region
of conical flow. The basic fluid dynamics for low
Reynolds number (creeping) conical flow has been
presented in Happel and Brenner (1965), pp. 138-141.
They give the pressure distribution associated with Fig. 3
as

. onQ  1-3§?
p=- ; m ......................... [21
where
p = pressure at (p,6)
p.8 = spherical polar coordinates
£ = cos 8
£, = cos a, where a = cone angle (Fig. 3)

and where the (arbitrary) pressure at infinity has been set
to zero.

Using equation [2] we compute the average pressure p
on the end cross-sections perpendicular to the cone axis
(of radii r, R respectively). On the radius R cross-section,

1 R-nQ  (1-3t?)

- Ty T e e s 2 27y dy
TR0 mp® (1+2E,)(1-Ey)

p =

582

where
y = p sin 8 = distance from cone axis (Fig. 3)
x = p cos O = distance along cone axis from vertex
(Fig. 3)
On the end cross-section of radius R, the distance x is
a constant:

x=Rcot o

Also,

vy =Rcotatan @
Substituting equations [4], [5] into [3], we obtain

— 2nQtanx £o
= 1-3¢2)d
PR (1+285)(1-4)? fo (1-38%)dt

Performing the integration and using £, = cos a,

— 2nQ sina(l+cosx)
P T IR (I+2cosay(i-cosa)
A similar computation on the other end cross-section
of radius r gives the following expression for the addi-
tional pressure drop over Poiseuille flow, Ap’, due to the
flow in the conical region:

Ap

, 8 sina(1+cosa) R ? Qe
= i {— } [81]

3 [(—) -11-—
R 4(1+2cosa)(1-cosa) r R

where the pressure drop due to Poiseuille flow over a
length fe has been subtracted from the pressure drop
due to the conical flow. Here

Qe = (R-r)tana = entrance length (Fig. 3)

For a given problem it remains to choose fe (or
equivalently, a). From our previous work (Rand and
Cooke, 1978), we tound that the resistance formula was
low by an amount that did not depend on the lengths £
(of the sieve plate) or L (of the sieve tube). (See e.g. Fig. 4
of Rand and Cooke, 1978). From similitude considera-
tions we therefore expect that

Re r
— =)
R R

Although we do not know the form of the function f in
equation {10], we must have no additional pressure drop
asr > R:

Expanding t(r/R) in a Taylor series about r = R, and us-
ing equation [11], we tind

r
f(r/R) = f'(1)(—-1) +
(r/R) ( )(R )

Neglecting higher order terms and setting A = -f'(1), we
are led to assume
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TABLE 1. COMPARISON OF PRESSURE DROPS DUE TO ONE SIEVE
TUBE AND ONE SIEVE PLATE AS PREDICTED BY VARIOUS THEORIES
Values given are nondimensional pressure drops defined by (Ap)}mR"* }/(8nQ(L+¢)}.
All cases are for ¢ = L = 5R. Note that in column 4, Ap’ of equation [8] has been
doubled since there is an entrance region on each side of the sieve plate.

Resistance Equation [8] with Improved
“‘exact” solution formula A=15 approximation

/R (Rand and Cooke) equation [1} in equation [13] (cols. 3+4)
0.5 9.15 8.50 0.65 9.15

0.6 4.69 4.36 0.29 4.65

0.7 2.72 2.58 0.13 2.71

0.8 1.775 1.721 0.049 1.770

0.9 1.275 1.262 0.012 1.274

where A is a constant independent of the other model
parameters. The cone angle a may be expressed in terms
of A by equation [9].

tan « = 1/

The problem now reduces to finding a suitable value
for A. We accomplished this by comparison with more ex-
act results obtained by the method of our previous paper
(Rand and Cooke, 1978). We found that A = 1.5 gave
good results. See Table 1 where we list values of non-
dimensional pressure drops obtained by both methods
for several geometries. In fact the value of Ap’ of equa-
tion [8] is not very sensitive to the choice of A. We found
that values of A between about 1.4 and 1.6 gave reason-
able results. In their study of the £ — 0 case, Lew and
Fung (1971) (p. 89) found that there was an entrance
region about 1.3 times the tube radius R. (Note however
that (a) they did not use a conical flow, and (b) our equa-
tion [13] gives e as A(1-r/R) times the tube radiius R, or
with A = 1.5, fe/R is smaller than 1.5 by a factor
depending on the pore size).

DISCUSSION

The approximate solution of the previous section may
be rewritten in a more useful form. Substituting A = 1.5
into equation [14] we find

a=arctan(1/A)=33.7Tdeg ... ... ...ttt [15])
Utilizing equation [13] in [8] we find
A'—an 057[Ra 1} - 1.5(1 p
P . (r ) - 1.5( —E) ........... [16]

Equation [16] permits us to write an improved approx-
imate equation based on the resistance equation [1]. We
find that in the single pore case (N = 1), the pressure
drop across one sieve tube and one sieve plate is well ap-
proximated by the expression

8nQ e R*

Ap = L+—(— 200p) ..
p "R4[ +N(r)]+(p)

where Ap’ is given by equation [16] for N = 1. Note that
Ap’' must be counted twice since there is an entrance
region on each side of the sieve plate.

Now let us consider the more realistic N pore case. If
we assume that each pore is fed by a portion of the sieve
tube and if we taken each of the N pores to have an
average radius r, then the ‘“effective tube radius” R,
associated with each pore may be defined by the relation

7R? = N7R,?
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where once again R is the sieve tube radius. In order to
obtain an approximate expression for Ap’ in the N pore
case, we replace R in equation [7] by R, and proceed with
the derivation as in the N = 1 case, dividing the resulting
expression for the pressure drop in the conical flow
region by N (for N pores in parallel). Taking fe =
1.5(R.-1) (cf. equation [13}), we find

3 [20]
R e

ap =209 Ze {o.s'nsl[(R—‘*)3 13 - 1.5(1 - — )}
R r R,
equation {17] still holds in the general N pore case, but
now Ap’ is given by equation [20].

Although equations [17] and [20] have been checked
against a more exact solution in the single pore (N = 1)
case, there is no easy way to check their accuracy in the
general N > 1 case. For N> 1 the problem is non axisym-
metric and therefore is more difficult mathematically
than the N = 1 case: no exact solution is available for N
> 1. Nevertheless the N > 1 case could be checked
against a numerical solution obtained, e.g., by finite
elements or finite differences. Alternately, an experimen-
tal simulation involving a physical model of a sieve tube
with a sieve plate could be used to check the N > 1 case.
However, since the approximate equations [17] and [20]
give good agreement with a more exact solution in the
case of a single pore (N = 1) we believe they offer an im-
provement to the resistance equation [1] in the N > 1
case.

The ratio E of the additional pressure drop predicted
by the conical flow analysis of equation [20], 2 Ap’, to
the pressure drop predicted by the resistance equation
[1] gives a measure of the improvement offered by our
theory.

Ap 2 Ap’

D = —additional y 449 percent =
Apresistance

X 100 percent
Presistance

Table 2 displays evaluations of equation [21] for
various biological parameters taken from the literature.
The value of E was found to vary from 15 percent to 76
percent. This suggests that while the resistance equation
may be sufficiently accurate for certain applications, the

TABLE 2. NUMERICAL EVALUATION OF EQUATION [21]

R r L 4 E(%)

Species um nm um um Ng§ (equation [211]) Relerence
Cucurbita 40 2.4 250 5 120 36 Crafts and
melopepo Crisp, 1971

(p. 399)
Glvcine max 6.5 060 156 1.2 53 26 Housley and
(stem) Fisher, 1977
(p. 705)
Beta 5 0.1 200 0.4 1250 17 Tvree etal.,
vulgaris 1974 (p. 592)
Sabal 18 0.95 700 0.5 287 15 "
palmetto
Robina 10 0.5 125 0.5 133 76
pseudo-
acacia
Gossypium 11 0.5 210 1.0 161 40

bardadense

R ?

§ N is calculated from percent pore area (p) using the relation N « )
100 r
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approximate equation [17] may provide a significant im-
provement for quantitative studies requiring greater
precision.

CONCLUSION

We have derived an expression for the pressure drop in
phloem flow, equation [17], which improves the much
used resistance equation [1]. The new approximation of-
fers a compromise between the mathematically intricate
but more exact solution of our previous paper (Rand and
Cooke, 1978) and the straightforward but questionably
accurate resistance equation [1].

We have checked our approximate equation [17]
against our previous work in the axisymmetric single
pore case (N = 1). We have provided a logical extension
of this approximate formula to the more realistic N > 1
pore case, but it has not been checked against a more ex-
act solution. A study involving a more exact solution in
the N > 1 pore case would be of interest.
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