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Abstract. We consider the rotational motion of a spacecraft composed of two bodies which are free to rotate
relative to one another about a common shaftS. A motor on one of the bodies provides a small constant internal
torque which influences the relative motion of the two bodies, and which may influence the orientation of their
common shaftS. Resonant capturerefers to the phenomenon that the spacecraft may end up in one of several
possible orientations, including a nearly flat spin (transverse toS), in addition to the expected simple rotation
aboutS.

The method of averaging is used to treat the original equations of motion, and it is shown that the essential
mathematical problem involvesseparatrix crossingin a problem with slowly moving separatrices. Energy changes
represented by Melnikov integrals are used to supplement the averaged equations in the neighborhood of the
heteroclinic motions. The method is used to predict which initial conditions lead to capture into each of three
distinct capture regions. The asymptotic results are compared to those obtained by direct numerical integration of
the equations of motion.
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1. Introduction

A dual-spin spacecraft consists of two bodies, called the platform and the rotor, attached to
each other by a shaftS about which they can rotate relative to one another, see Figure 1. In
addition, the entire assemblage can rotate freely in space. A motor acting along the shaftS

may be utilized to apply an equal and opposite torque to both bodies. The motor may be used
to control the orientation of the spacecraft in space. In this work we will be concerned with
accomplishing a rotational pointing maneuver with a small constant torque supplied by the
motor.

We model the platform and rotor as rigid bodies. The rotor is assumed to be axisymmetric
and balanced, with its symmetry axis coinciding with the shaftS. The platform is assumed to
be asymmetric and balanced. Herebalancedmeans that the shaft axisS is a principal axis for
the moment of inertia tensor, i.e., no product of inertia terms are present. Also,axisymmetric
means that all principal moments of inertia in directions orthogonal toS are equal. We assume
that the initial state of the system and the physical parameters are chosen such that the applied
torque is able to drive the system towards what turns out to be one of three different classes of
motions, a process calledresonant capture. Each of these classes of motions will be shown to
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Figure 1. Model of a dual-spin spacecraft consists of an axisymmetric rotorR and an asymmetric platformP .
Their common shaftS is directed along axis 1. Axes 1–2–3 are fixed inP .

Figure 2. In the parameter range 0< µ < −i2, ε = 0 (µ fixed), Equations (1–4) exhibit four heteroclinic orbits
which connect two saddle points. Displayed is a projection from the North pole of the sphere (7) onto the plane
x1 = −1. In addition to the separatrices, four periodic orbits are also shown. Dots represent centers. The origin
represents the South pole of the sphere. The North pole lies at infinity in this projection (cf. Figure 3).

lie in capture regionswhich are separated from each other by slowly moving separatrices, see
Figure 2. We shall be concerned with predicting which initial conditions lead to capture into
each of these capture regions.

Our procedure will be to follow the work of Haberman and his colleagues [2–4, 8], and
replace the original equations of motion by averaged equations. The averaging process is not
valid in the neighborhood of the slowly moving separatrices, however, and energy changes
represented by Melnikov-type integrals are used to handle the problem ofseparatrix crossing.

The problem of resonant capture in dual-spin spacecraft has been studied recently in a
number of research papers. Kinsey et al. [15, 16] studied spinup in a dual-spin spacecraft in
which the rotor was axisymmetric with small imbalance, while the platform was axisymmetric
and balanced. They used the method of averaging to show that some initial conditions lead
to pass-through, while others lead to capture. Rand et al. [21] and Quinn et al. [18] studied a
simpler model problem and showed that capture corresponded to the entry of a given trajectory
into a region of phase space bounded by a slowly moving ‘instantaneous separatrix’. In Hall
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and Rand [13] the rotor was taken as axisymmetric and balanced, while the platform was
asymmetric and balanced. Instead of visualizing the dynamics on a sequence of momentum
spheres, they used a two-dimensional space with coordinates of energy and a slowly-varying
parameter to display the motion of the system. They obtained averaged equations of motion,
which turned out to involve elliptic functions. They noted that numerical integration of the
averaged equations was inaccurate in the neighborhood of separatrix crossings, since the
averaged equations are not valid near the instantaneous separatrices. Hall [11] used a similar
system, reversing the roles played by rotor and platform, to discuss resonant capture during
despin of the axisymmetric platform. He presented a probabilistic treatment of capture based
on numerical integration of the original (unaveraged) equations. Tsui and Hall [26] used a
similar approach to treat the system dealt with by Kinsey et al. [15, 16]. Hall [12] used a
similar approach to treat the problem of an asymmetric platform attached toN axisymmetric
rotors. He showed that although the problem is described byN + 3 first order ordinary dif-
ferential equations, conservation of angular momentum and the method of averaging could be
used to reduce the number of equations to one for small spinup torques. The reader is referred
to [12] for an extensive list of related references. All these papers share the essential difficulty
of how to handle the crossing of the separatrix. The special feature of the present work is
that separatrix crossing is treated using consistent asymptotic approximations via Haberman’s
approach.

2. Summary of Our Approach

For the reader’s convenience we offer the following summary of the approach used in this
paper. The process of resonant capture will be shown to consist of the gradual approach
towards the separatrix loops of Figure 2 of motions which start outside these separatrices.
After circulating around the loops in general many times, a given motion eventually crosses
the instantaneous separatrix and enters one of the three separated regions. Just before a motion
reaches the instantaneous separatrix, it must pass through a region close to one of the saddles
which we will call the entrance saddle approach. Using Melnikov integrals, we will be able
to compute the energy needed at the entrance saddle approach in order for a given motion to
lie on the basin boundaries of the separated regions, i.e. to lie on the stable manifold of the
saddle-likenormally hyperbolic motions. Then we will use equations obtained by the method
of averaging, which are valid in the regions away from the separatrices, to determine which
initial conditions lead to motions that pass through the entrance saddle approach with the
appropriate energy so as to lie on the various basin boundaries.

3. Equations of Motion

We consider a spacecraft consisting of an axisymmetric, balanced rotor and an asymmetric,
balanced platform, see Figure 1. The components of the dimensionless angular momentum
vector (x1, x2, x3) are referred to axes fixed in the platform with principal axis(1, 0, 0) di-
rected along the shaftS, and with perpendicular axes(0, 1, 0) and(0, 0, 1) also corresponding
to principal axes for the spacecraft. We present the following equations of motion without
derivation. For a derivation, see [13, 14].

dx1

dt
= (i2− i3)x2x3, (1)
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dx2

dt
= (i3x1− µ)x3, (2)

dx3

dt
= −(i2x1 − µ)x2, (3)

dµ

dt
= −ε, (4)

where

xi = hi/h, i = 1, 2, 3,

h =
√

h2
1+ h2

2+ h2
3,

h1 = I1ω1+ Isωs,

h2 = I2ω2, h3 = I3ω3,

Ii = moment of inertia of spacecraft about axisi, i = 1, 2, 3,

Is = moment of inertia of rotor about axis 1 (shaftS),

ωi = angular velocity of platform about axisi, i = 1, 2, 3,

ωs = angular velocity of rotor about axis 1 (shaftS),

ij = 1− Ip/Ij , j = 2, 3,

Ip = I1− Is = moment of inertia of platform about axis 1 (shaftS),

µ = ha/h = dimensionless angular momentum of rotor about axis 1 (shaftS),

ha = Is(ωs + ω1) = angular momentum of rotor about axis 1 (shaftS),

t = ht̃/Ip = scaled time,

t̃ = real time,

ε = gaIp/h2,

ga = despin torque applied by platform on rotor about the negative 1 axis (shaftS).

Note that the assumption of constant torquega in Equation (4) gives

µ = µ0− εt. (5)

We shall generalize this to

µ = µ(εt),
dµ

dt
< 0. (6)

Multiplying Equations (1–3), respectively byx1, x2, x3 and adding shows that angular mo-
mentum is conserved (even whenµ is not constant) in the form:

x2
1 + x2

2 + x2
3 = constant= 1, (7)
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Figure 3. Orbits of Equations (1–4) forµ = 0.1, ε = 0 (µ fixed), a projection of the sphere (7) from infinity onto
thex3–x1 plane. Dots represent centers. The separatrices of Figure 2 appear here as two intersecting straight lines.
Periodic orbits encircling each of the centers appear as curved line segments.

where the constant of integration is unity in view of the definition of dimensionless angular

momentumxi = hi/

√
h2

1+ h2
2+ h2

3. In this paper we analyze the dynamical system (1–3),
(6) on the unit sphere (7).

We begin by briefly reviewing some features of the system whenµ is constant (see [13]
for more details). As in [13] we shall treat oblate spacecrafts for whichIp > I2 > I3, or,
equivalently,i3 < i2 < 0. E.g., looking ahead towards our numerical example, we shall take
i3 = −0.7 andi2 = −0.3. Equations (1–3) possess two, four or six equilibria, depending on
the value ofµ. In the range we shall be interested in, 0< µ < −i2, there are six equilibria on
the sphere (7), four centers and two saddle points, see Figure 3. There are centers at the North
(1, 0, 0) and South (−1, 0, 0) poles. There are two more centers located symmetrically inx3

at x1 = µ/i3, x2 = 0, x2
3 = 1− (µ/i3)

2. The saddle points are located atx1 = µ/i2, x
2
2 =

1− (µ/i2)
2, x3 = 0. There are four heteroclinic orbits which connect the two saddle points

as shown in Figures 2 and 3. As shown in [13], a pitchfork bifurcation occurs atµ = −i2
(= 0.3 here) in which the two saddles coalesce with the center at the South pole, creating a
saddle there. Another pitchfork occurs atµ = −i3 (= 0.7 here) in which the two symmetrical
centers combine with the saddle at the South pole to create a center there.

Whenµ is constant, Equations (1–3) admit the following energy-like integral (which we
call H after the Hamiltonian, even though this system will be shown not to be Hamiltonian)

H = −2µx1 + i3x
2
1 + (i3− i2)x

2
2 − i3+ i2+ µ2

i2
. (8)

We have chosen the constant in Equation (8) so that H is zero at the saddle points. The
Hamiltonian (energy) is positive in the regions immediately surrounding the North and South
poles, while the energy is negative in regions immediately surrounding the symmetric centers.
Thus, for constantµ, all the solutions are periodic, corresponding to closed curves on the
sphere, except for the heteroclinic orbits.
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Figure 4. Numerical integration of Equations (1–4) showing how three different initial conditions lead to capture
into each of three capture regions. Parameters arei2 = −0.3, i3 = −0.7, ε = 0.003,µ0 = 0.25. Initial conditions
arex2(0) = 0 andx3(0) = −0.945,−0.955, and−0.965, andx1(0) > 0 given by Equation (7). Each initial
condition produces a trajectory which is respectively captured into the left, middle and right capture regions.
Projection is from infinity onto thex3–x2 plane.

The foregoing conclusions no longer hold true whenµ is permitted to change slowly in
time. In this case H ceases to be a first integral and varies according to

dH

dt
= −2

dµ

dt

(
x1− µ

i2

)
. (9)

The points on the sphere which were equilibria for constantµ in general cease to be equilibria
whenµ changes slowly, and will be referred to asslowly-varying equilibria. The North and
South poles of the sphere are exceptions and remain true equilibria even whenµ changes in
time. The saddle points are structurally stable features, and for small(dµ)/(dt) the slowly-
varying saddles give rise to saddle-like normally hyperbolic motions. The slowly-varying
centers, however, will in general lose their center-like quality and will become hyperbolic.

The dynamics of the system (1–4) turn out to involve a competition between the three
regions associated with each of the slowly-varying centers, see Figure 4. Our goal in this
work is to determine which initial conditions lead to capture into each of these regions.

4. Energy-Angle Coordinates

In order to conveniently apply the method of averaging to this problem, we change vari-
ables to what we callenergy-angle coordinates(similar to, but not the same as action-angle
variables). This is accomplished by first reducing the three-dimensional system (1–3), to a
two-dimensional system with coordinatesx1 andx2 by using Equation (7) to eliminatex3.

We rewrite Equations (1) and (2) in the form

dq

dt
= f1(q, p, T )+ ε g1(q, p, T ), (10)

dp

dt
= f2(q, p, T )+ ε g2(q, p, T ), (11)



Resonant Capture and Separatrix Crossing in Dual-Spin Spacecraft165

where

q = x1, p = x2, T = εt,

f1 = (i2− i3)x2x3 = (i2− i3)px3(q, p),

f2 = (i3x1− µ)x3 = (i3q − µ)x3(q, p),

g1 = g2 = 0, included here to make the analysis more general.

Equations (10) and (11) can be made to resemble a Hamiltonian system by noting that

f1 = γ Hp, (12)

f2 = −γ Hq, (13)

where

γ = −x3(q, p)/2. (14)

Note that the general formulation (10) and (11) with (12) and (13) includes the case where the
unperturbed system is Hamiltonian (ifγ is a constant). This is not the case for Equations (1),
(2), (3), however.

Now we transform to energy-angle coordinates (H, ψ). We normalize the angle or phase
so that the coordinates (q, p) repeat whenψ is increased by one. The coordinate system is
defined by the unperturbed problem withµ fixed. The angleψ is defined by

ψ

ω(H, T )
=

q∫
qc(H,T )

dq

f1(q, p, T )
=

p∫
pc(H,T )

dp

f2(q, p, T )
, (15)

whereω(H, T ) is the frequency related to the usual period of the nonlinear oscillator involving
the closed line integral

∮
:

1

ω(H, T )
=
∮

dq

f1(q, p, T )
=
∮

dp

f2(q, p, T )
. (16)

The integrals are performed with H andT fixed. The lower limits correspond to where we
chooseψ = 0. Given H andψ , q = q(ψ, H, T ) andp = p(ψ, H, T ) are determined from
Equation (15) and are periodic inψ (with period 1). By taking∂/(∂ψ) of Equation (15), we
obtain the exact equations

ωqψ = f1(q, p, T ), (17)

ωpψ = f2(q, p, T ). (18)

In Appendix A, we use the chain rule for partial derivatives to derive the transformed
equations of motion:

dH

dt
= ε(g1Hq + g2Hp + HT ), (19)

dψ

dt
= ω(H, T )+ ε(g1ψq + g2ψp + ψT ). (20)
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For the dual-spin spacecraft problem (1–3) and (6), we haveg1 = g2 = 0 and Equations (8)
and (9) give

dH

dt
= −2εµT

(
q − µ

i2

)
, (21)

dψ

dt
= ω(H, T )+ εψT . (22)

Even though we will be working to higher order inε, it turns out that we will not need to know
much aboutψT .

5. Symmetries

Our results require the use of particularly accurate averaged equations which depend on certain
symmetries with respect to the phase angleψ of the system as they apply especially to the
perturbations in Equations (19) and (20). We, therefore, examine the symmetries of the system.
Symmetry inp = x2 will be very important for us. We note that the Hamiltonian given by
Equation (8) is symmetric inp = x2, by which we mean H(q,−p, T ) = H(q, p, T ). When
the Hamiltonian is symmetric we chooseψ = 0 atp = 0 (usually the minimum ofq), and thus
the lower limit of integrationpc(H, T ) = 0 in Equation (15). In general, we needf1(q, p, T )

to be an odd function ofp andf2(q, p, T ) to be an even function ofp. This requires that
γ (q, p, T ) be an even function ofp, a condition which we assume is valid. In the case of the
present application, Equations (14) and (7) giveγ = ±√1− q2− p2/2, an even function of
p. From the phase portrait,

p is an odd function ofψ, (23)

(andq is an even function ofψ). Any even function ofp will be an even function ofψ , and
any odd function ofp will be an odd function ofψ . First partial derivatives with respect top
of an even function ofp will be an odd function ofp (and vice versa). Partial derivatives with
repect toq andT holdp fixed and hence even functions ofp stay even (and vice versa). Thus

H is an even function ofp (H is an even function ofψ), (24)

Hp is an odd function ofp (Hp is an odd function ofψ), (25)

Hq is an even function ofp (Hq is an even function ofψ), (26)

HT is an even function ofp (HT is an even function ofψ). (27)

Sincep is an odd function ofψ , it follows that

ψ is an odd function ofp (ψ is an odd function ofψ), (28)

ψp is an even function ofp (ψp is an even function ofψ), (29)

ψq is an odd function ofp (ψq is an odd function ofψ), (30)

ψT is an odd function ofp (ψT is an odd function ofψ). (31)
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The evenness and oddness of various derivatives with respect toψ can also be derived using
the expressions for them in Appendix A.

We assume the perturbationεg1(q, p, T ) is an even function ofp, and we assume
εg2(q, p, T ) is an odd function ofp. These are the same kind of symmetries that arise for
damping in a conservative system, so that Bourland and Haberman [2] have referred to this
type of perturbation as ‘purely dissipative’ (see also [8]). Thus,

g1 is an even function ofp (g1 is an even function ofψ), (32)

g2 is an odd function ofp (g2 is an odd function ofψ). (33)

We put the energy-angle equations (19) and (20) in what is called standard form [1, 23]:

dH

dt
= εf (H, ψ, T ), (34)

dψ

dt
= ω(H, T )+ εg(H, ψ, T ), (35)

where

f = g1Hq + g2Hp + HT , (36)

g = g1ψq + g2ψp + ψT . (37)

Using Equations (24–33), it immediately follows that theO(ε) terms in standard form have
the following symmetry:

f is an even function ofp (f is an even function ofψ), (38)

g is an odd function ofp (g is an odd function ofψ). (39)

In the present applicationf = −2µT (q − (µ/i2)) and g = ψT , which has the desired
symmetry due to Equation (31).

6. Averaging

In this section, we follow the procedure used in [2, 8] to apply the method of averaging to
the energy-angle equations (34) and (35). The method of averaging allows us to investigate
the effect of slow variation of parameters, and of other perturbations, on the behavior of the
system for long times (t = O(1/ε), T = εt = O(1)) by averaging over the faster motion
of the unperturbed system. We will use higher-order averaging [1, 19, 20, 23] which involves
transforming the governing Equations (34) and (35) to a simpler form via a near-identity
transformation:

H = e + εH1(e, φ, T )+ ε2H2(e, φ, T )+ · · · , (40)

ψ = φ + εψ1(e, φ, T )+ ε2ψ2(e, φ, T )+ · · · , (41)
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where Hi andψi are periodic functions ofφ. Heree andφ are the transformed or averaged
versions of H andψ . We will require that

∫ 1
0 Hi(e, φ, T )dφ = 0 so thate is the average of the

energy H. We also choose
∫ 1

0 ψi(e, φ, T )dφ = 0.
In Appendix B we show that when Equations (40) and (41) are introduced into Equa-

tions (34) and (35), the resulting equations one andφ become:

de

dt
= ε(f − ωH1φ

)+ ε2(M − ωH2φ
)+O(ε3), (42)

dφ

dt
= ω(e, T )+ ε(g − ωψ1φ

+ ωeH1)+O(ε2), (43)

where

M = −ωeH1H1φ
+ feH1+ fφψ1− f H1e

− gH1φ
+ ωH1φ

(H1e
+ ψ1φ

)− H1T
. (44)

The right-hand sides of Equations (42) and (43) are periodic functions ofφ. It follows that
(de)/(dt) and(dφ)/(dt) satisfy the averaged equations

de

dt
= ε〈f 〉 + ε2〈M〉 +O(ε3), (45)

dφ

dt
= ω(e, T )+ ε〈g〉 +O(ε2), (46)

where we have introduced the notation〈f 〉 = ∫ 1
0 f dφ for the average (mean) of any function

f for fixede andT . We have noted that for example〈H1φ
〉 = 0 because H1 is periodic inφ, and

we have assumed that H1 has zero average. It will be helpful to introduce the fluctuating (or
oscillatory) part of a periodic function defined to be the difference between it and its average:

{f } = f − 〈f 〉. (47)

By comparing Equations (42) and (43) to Equations (45) and (46), we find equations that
define the near identity transformations

ωH1φ
= {f }, (48)

ωH2φ
= {M}, (49)

ωψ1φ
= {g + ωeH1}. (50)

In order for H1 to have zero average, we integrate Equation (48) and obtain

H1 = 1

ω

φ∫
0

{f } dφ′ − 1

ω

〈 φ∫
0

{f } dφ′
〉

. (51)

Since from Equation (38)f is an even periodic function ofφ, it follows that{f } is an even
periodic function with zero average. Thus,

∫ φ

0 {f } dφ′ is an odd periodic function, which
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therefore has zero average,〈∫ φ

0 {f } dφ′〉 = 0. Thus H1 is an odd periodic function ofφ
satisfying

H1 = 1

ω

φ∫
0

{f } dφ′. (52)

Expressions for H2 andψ1 exist but we do not need them in this paper.
Symmetry results that we need are

H1 is an odd function ofφ, (53)

H1φ
is an even function ofφ, (54)

H1e
is an odd function ofφ, (55)

H1T
is an odd function ofφ. (56)

We also need symmetry results forψ1 which can be obtained from Equation (50). Since H1

from Equation (53) andg from Equation (39) are odd functions ofφ, it follows that

ψ1 is an even function ofφ, (57)

ψ1φ
is an odd function ofφ. (58)

We now simplify Equations (45) and (46). From Equation (39)g is an odd function ofφ,
and thus〈g〉 = 0. From Equations (38), (39) and (53–58), it follows thatM defined by Equa-
tion (44) is an odd periodic function ofφ, and hence〈M〉 = 0. The leading-order equations for
the averaged energy and phase are accurate to higher-order (using the symmetry arguments)
in the sense that

de

dt
= ε〈f 〉 +O(ε3), (59)

dφ

dt
= ω(e, T )+O(ε2). (60)

Using Equation (17), we have

〈f 〉 = ω(e, T )

∮
f dq

f1(q, p, T )
, (61)

where from Equation (36) and the near-identity transformation we have:

f = g1eq + g2ep + eT . (62)

The integral in Equation (61) should be computed at fixede andT , so that

〈f 〉 = −ω(e, T )D(e, T ), (63)

where the dissipation integralD(e, T ) is defined by

D(e, T ) = −
∮

f dq

f1(q, p, T )
. (64)
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Figure 5. The four heteroclinic parametersDi of Equation (67) are Melnikov integrals. The capture regions L, M
and R are marked. The origin here corresponds to the South pole of the sphere (7), and to motion of the spacecraft
about the common shaftS. Capture into regions L and R corresponds to more general motions of the spacecraft,
including the possibility of a flat spin, that is, a motion transverse toS.

Here D(e, T ) is approximately the change in energy over one periodic orbit. In the dual-
spin spacecraft example, Equation (1) givesf1 = (i2 − i3)x2x3 = (i2 − i3)px3(q, p) and
Equation (21) gives

f = eT = −2µT

(
q − µ

i2

)
. (65)

We have shown that the leading-order averaged energy and angle equations (59) and (60)
obtained by the method of averaging are more accurate than one would have anticipated.
These averaged equations are valid away from the separatrices of the unperturbed problem.
However, as the slowly varying strongly nonlinear oscillatory orbits approach an unperturbed
heteroclinic orbit, the method of averaging fails. Nevertheless, we will show in the next section
how the averaged equations may be supplemented in order to calculate the boundaries of the
basin of attraction.

7. Separatrix Crossing

The method of averaging fails near an unperturbed heteroclinic orbit because the period of
oscillation approaches infinity. The unperturbed heteroclinic orbits have been defined bye =
0. The slow variation Equation (59) predicts a slow timeTc = εtc at which an unperturbed
heteroclinic orbit is passed. Since it is known [24] that the time between saddle approaches
is logarithmically largeO(ln ε) on the fast scalet but smallO(ε ln ε) on the slow time scale
T = εt , the slow time variable may be frozen atTc as an approximation valid for passage
through the unperturbed heteroclinic orbit. This is valid even though the time predicted for
crossing the unperturbed heteroclinic orbit by slow variation theory is not valid. See [2] where
it is shown that the time error isO(1) in the fast time variablet , but is small in the slow time
variableT = εt .

To analyze nearly heteroclinic orbits, we use techniques originally developed for nearly ho-
moclinic orbits. Timofeev [25], Tennyson et al. [24], and Bourland and Haberman [2] showed
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that the slow passage through an unperturbed homoclinic orbit consists of a large sequence
of nearly homoclinic orbits. For our case, the solution consists of a large sequence of nearly
heteroclinic orbits whose phase portrait is shown in Figure 5. Well-known methods for nearly
homoclinic orbits may be used. Along these nearly heteroclinic orbits (see, for example, [6]),
the leading order change (dissipation) in the energy H over a complete orbit from one saddle
approach to the next can be appoximated by the heteroclinicMelnikov function(calculated
along an unperturbed heteroclinic orbit):

1H ≈ ε

∞∫
−∞

(g1Hq + g2Hp + HT ) dt =
∫

(g1Hq + g2Hp + HT ) dq

f1(q, p, T )
, (66)

wheref1 = Hpγ . Extensions like Equation (66) for problems with slow variation were
described in [7, 22].

This leads us to define four different heteroclinic parametersD1,D2,D3,D4, as path
integrals along the four different heteroclinic orbits, see Equations (36) and (64) and Figure 5:

Di = −
∫

(g1Hq + g2Hp + HT ) dq

f1(q, p, T )
. (67)

In the case of slow variation these integrals depend onT but as described in the previous
paragraph can be frozen atTc predicted by slow variation theory. Note that the dissipation
integral for nonlinear oscillators approaches the appropriate sum of the heteroclinic dissipation
functions. Since the energy is positive in the region marked M in Figure 5, but the energy is
negative in the regions marked L and R, in order for motions to be able to be captured into each
of the three capture regions, the following restrictions must be satisfied by the heteroclinic
dissipation parameters:

D3+D4 > 0, (68)

D1+D2 > 0, (69)

D2+D3 < 0. (70)

By adding Equations (68) and (69) and comparing that with Equation (70), it follows that

D1+D4 > 0, (71)

so that the periodic orbits which surround the three capture regions (see Figure 3) will ap-
proach an unperturbed heteroclinic orbit. For the dual-spin spacecraft, two of the dissipation
mechanisms along the heteroclinic orbits are identical, thusD1 = D4 andD2 = D3 so that
there are only two parameters. We assume

D1 > 0, D2 < 0, D3 < 0, D4 > 0, (72)

with Equations (68) and (69) since we show numerically this corresponds to our specific case.
Interesting cases can arise if these inequalities (72) are violated with Equations (68–71) being
satisfied [9].

There is a competition between three capture regions which we call left (L), middle (M),
and right (R) for the cartoon shown in Figure 5. The boundaries of the basins of attaction
are the stable manifolds of the saddle points, and they are sketched in Figure 6 near the
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Figure 6. The stable manifolds of the saddle points (marked with dots) are the boundaries of the basins of attrac-
tion. The neighborhood of the upper saddle (markedA) is theentrance saddle approach. The energyw0 that a
trajectory has atA determines which capture region (L, M or R) it approaches, see Equations (73–76). The energy
predicted by the method of averaging may be used at the points markedB whereφ = [φc−((D4/2)/(D1+D4))],
see Equation (83).

unperturbed separatrix at the frozen timeTc. Each saddle point has two branches of the stable
manifold. The two saddle points give rise to four branches and thus four thin bands. There are
two thin bands which approach the middle capture region. The bands alternate RMLM and
repeat.

We letw0 be the energy at the entrance saddle approach which determines which attractor
the solution approaches:

if 0 < w0 < ε(D1+D2), then capture into R, (73)

if ε(D1+D2) < w0 < εD1, then capture into M, (74)

if εD1 < w0 < ε(D3+D4+D1), then capture into L, (75)

if ε(D3+D4+D1) < w0 < ε(D4+D1), then capture into M. (76)

From Equations (73–76) the probability of capture is well known [17]:

P(R) = D1+D2

D1+D4
, (77)

P(L) = D3+D4

D1+D4
, (78)

P(M) = −D2

D1+D4
+ −D3

D1+D4
= −D2−D3

D1+D4
. (79)

The energies (73–76) are determined by the consideration of the change in energy (66) and
(67) from one saddle approach to the next. Before reaching the entrance saddle approach,
all solutions consist of a repeated sequence of nearly heteroclinic orbitsD1D4. The solu-
tions which are captured into the right capture region follow the repeated sequence of nearly
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heteroclinic orbitsD1D2 , while those captured by the left capture region follow the nearly
heteroclinic orbitD1 succeeded by the repeated sequenceD4D3. Solutions captured into the
middle capture region have two possible sequences:D1 followed by repeatedD2D3, and
D1D4 followed by repeatedD3D2. These sequences represent both the topological sequence
of nearly heteroclinic orbits and the sequence of changes of the energy (66) from one saddle
approach to the next.

8. Boundaries of the Basins of Attraction

In this section we show how to use the averaged energy and phase equations (59) and (60)
to determine the boundaries of the basin of attraction even though the method of averaging
is not valid near the unperturbed heteroclinic orbits. We follow the method of Bourland and
Haberman [2–4] who showed how to use the averaged equations at the last saddle approach
to determine the boundaries of the basin of attraction for dissipatively perturbed double-well
potentials with and without slow variation. Haberman and Ho [8] extended their method to
dissipatively perturbed autonomous Hamiltonian systems.

The boundaries of the basin of attraction require knowing the energy H to enough accuracy
to account forO(ε) terms. From the near identity transformation (40), using Equation (52) we
have

H = e + ε
1

ω

φ∫
0

{g1eq + g2ep + eT } dφ′ +O(ε2). (80)

The easiest places to use the method of averaging are those places whereφ is an integer or
half integer. In the dual-spin spacecraft problem such points correspond to points on thex2- or
x3-axes. At these places it holds that H= e+O(ε2) andψ = φ+O(ε). We use the averaged
Equations (59), (60) in whichω(e, T ) andD(e, T ) are given by Equations (63) and (64):

de

dt
= −εω(e, T )D(e, T ), (81)

dφ

dt
= ω(e, T ), (82)

with initial conditionφ(0) = 0, and we will choosee(0) so that the corresponding energy level
corresponds to the boundary of the basin of attraction. We do not distinguish the initial energy
H(0) from the initial averaged energye(0) since they differ byO(ε2). From Equation (81)
we compute the timeTc = εtc at which the method of averaging predicts the unperturbed
heteroclinic orbit is first reached, that ise(Tc) = 0. Once we knowTc, we may determine
the phaseφc at whiche = 0 by using Equation (82). For a general initial condition of the
form (φ(0) = 0, e(0) arbitrary),φc will in general be no integer or half-integer. That is, the
averaged equations predict that an arbitrary orbit will intersect the instantaneous separatrices
at a generic point.

As a motion approaches the separatrices on its way to being captured, it generally ‘circles
the wagons’ many times before reaching the region of separatrix crossing. Each complete
cycle around the separated regions accounts for one unit ofφ. Thus, we may locate the relative
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position of the point of separatrix crossing (as predicted by the averaged equations). We will
show that it is convenient to defineφmod

c in the following unconventional way:

φmod
c = φc −

1
2 D4

D1+D4
−
[
φc −

1
2 D4

D1+D4

]
, (83)

whereφmod
c is the modulus (or fractional part) of the phase relative to the phase(D4/2)/(D1+

D4) at which solutions first approach the entrance saddle region, and[
φc −

1
2 D4

D1+D4

]
is the integer part of this phase and will be the number of oscillations before capture).

The corresponding change in the energy variablee which occurs as the motion passes
through its last fraction of a cycleφmod

c can be obtained by approximating the energy dis-
sipation function for the strongly nonlinear oscillatorD(e, T ) ≈ D1 + D4 by a constant
near the unperturbed heteroclinic orbit evaluated at the frozen timeTc. In this case, from
Equations (81) and (82),de/dφ = −εD(e, T ), where the frozen time has been used for the
frequencyω(e, T ). Thus, for a partial orbit near the unperturbed heteroclinic orbit

1e = −ε(D1+D4)1φ, (84)

where the dissipation has been approximated by a constant. Small percentage errors which
have occurred are not important in this calculation because the leading order term isO(ε).

Now since the average energye = 0 atφc, Equation (84) gives the following expression
for the energy at[φc − ((D4/2)/(D1+D4))]:

H ≈ e = ε(D1+D4)φ
mod
c + 1

2
εD4. (85)

Note that the actual energy H is well approximated by the average energye at this point where
the phase is an integer by the foregoing symmetry arguments.

The energy H when the phase is an integer (85) can be related (see Figure 6) to the energy
w0 at the entrance saddle approach as follows:

H−w0 = 1

2
εD4 (86)

since the orbit corresponds to one half of a nearly heteroclinic orbit of theD4 topology. Using
Equation (85) for H gives

w0 = ε(D1+D4)φ
mod
c . (87)

Given initial conditions on the averaged energye(0) we can determineφmod
c and hencew0

from Equation (87). However, Equations (73–76) show howw0 determines which capture
region the solution approaches. Thus, we can express the basins of attraction in terms ofφmod

c

which is computed from the averaged Equations (59) and (60) with initial conditionφ(0) = 0
(and only depends on the initial averaged energye(0)):

if 0 < φmod
c <

D1+D2

D1+D4
, then capture into R, (88)
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if
D1+D2

D1+D4
< φmod

c <
D1

D1+D4
, then capture into M, (89)

if
D1

D1+D4
< φmod

c <
D3+D4+D1

D1+D4
, then capture into L, (90)

if
D3+D4+D1

D1+D4
< φmod

c < 1, then capture into M. (91)

In the case of the dual-spin spacecraft, we have the symmetryD1 = D4 > 0 andD2 = D3 < 0
with D1+D2 > 0, giving:

if 0 < φmod
c <

D1+D2

2D1
, then capture into R, (92)

if
D1+D2

2D1
< φmod

c <
1

2
, then capture into M, (93)

if
1

2
< φmod

c <
1

2
+ D1+D2

2D1
, then capture into L, (94)

if
1

2
+ D1+D2

2D1
< φmod

c < 1, then capture into M. (95)

Formulas (88–95) also correspond to the boundaries of the basin of attraction (the stable
manifold of the saddle points).

9. Numerical Computations

In this section we apply the asymptotic theory developed above to the dual-spin spacecraft
equations. The goal of the computation is to determine which initial conditions lead to capture
into each of the three attractive regions, that is, to find the boundaries of the basins of attrac-
tion. As a check on the theory, we compare its predictions with direct numerical integration
of the original differential equations of motion.

The numerical procedure may be outlined as follows:
1. Computeω(e, T ) from Equation (16).
2. ComputeD(e, T ) from Equation (64).
3. Compute the quantitiesD1 = D4 andD2 = D3 from Equation (67).
4. Integrate the averaged Equation (81)

de

dT
= −ω(e, T )D(e, T ), (96)

with the initial conditione(0) = e0, wheree0 is a parameter to be determined. Here
e0, when chosen appropriately, will correspond to a boundary of a basin of attraction.
Integrate Equation (97) untile = 0, and call that timeTc, that ise(Tc) = 0.
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5. Integrate the averaged Equation (82)

dφ

dT
= ω(e, T )

ε
, (97)

with initial conditionφ(0) = 0. Integrate fromT = 0 toT = Tc, and call the final value
φc, that isφ(Tc) = φc.

6. Steps 4 and 5 above will yield a value ofφc for each initial conditione0. Vary e0 until φc

satisfies one of the conditions:

φmod
c =

{
0,

D1+D2

2D1
,

1

2
,

1

2
+ D1+D2

2D1
, 1

}
, (98)

in which case the initial condition(φ(0) = 0, e(0) = e0) will lie on the basin boundary
separating the regions{MR,RM,ML,LM,MR }, respectively. Since the basin boundaries
lie close to one another, especially for smaller values ofε, the hunt for appropriate values
of e0 may involve very small increments.

7. In order to compare the predictions obtained by the foregoing calculations with direct
integration of the original differential equations, proceed as follows: replacex1 in Equa-
tions (2) and (3) by use of Equation (7). Then integrate the resulting pair of differential
equations with the initial conditionx2(0) = 0 (corresponding toφ(0) = 0), while varying
x3(0) (corresponding to varyinge(0)), until a basin boundary is reached.

We now proceed with the details. From Equation (4) we take

µ = µ0− T . (99)

From Equation (16) we find

1

ω(e, T )
=
∮

dx1

(i2− i3)x2x3
. (100)

In order to simplify this integral, we write Equation (8) in the form:

(i2− i3)x
2
2 = F2(x1, µ)− e, where F2(x1, µ) = i3x

2
1 − 2µx1 + µ2

i2
+ i2− i3. (101)

A similar expression forx2
3 may be obtained by solving Equation (7) forx2

2 and substituting
in Equation (8):

(i2− i3)x
2
3 = e − F3(x1, µ), where F3(x1, µ) = i2x

2
1 − 2µx1 + µ2

i2
. (102)

Equation (100) becomes

1

ω(e, T )
=
∮

dx1

F(x1, µ)
, where F(x1, µ) = √F2(x1, µ)− e

√
e − F3(x1, µ) . (103)

It turns out that this integral can be evaluated in closed form [10, 13]:

1

ω(e, T )
= 8√

i2i3

K(k)√
(a − c)(b− d)

, where k2 = (a − b)(c − d)

(a − c)(b− d)
, (104)
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whereK(k) is the complete elliptic integral of the first kind [5], anda > b > c > d are
roots ofF2(x1, µ)− e = 0 ande − F3(x1, µ) = 0. Herea is always the larger root of theF2

equation andb is always the larger root of theF3 equation.
Next we findD(e, T ) from Equation (64):

D(e, T ) = 2
∮

x1− µ

i2

F(x1, µ)
dx1. (105)

This integral can also be evaluated in closed form [10, 13]:

D(e, T ) = 2

ω(e, T )

(
G− µ

i2

)
, (106)

where

G = b + bπ(α2− α2
1)(1−3(ψ, k))

2K(k)
√

α2(1− α2)(α2− k2)
, (107)

α2 = a − b

a − c
, α2

1 =
c

b
α2 , ψ = sin−1

√
1− α2

1− k2
, (108)

and where3(ψ, k) is Heuman’s Lambda function:

3(ψ, k) = 2

π
[E(k)F (ψ, k′)+K(k)E(ψ, k′)−K(k)F (ψ, k′)], (109)

whereE(k) is the complete elliptic integral of the second kind,F (ψ, k′) andE(ψ, k′) are the
incomplete elliptic integrals of the first and second kind respectively, andk′2 = 1− k2.

Next we findD1 andD2. D1 is theD-integral (105) evaluated along one of the two exterior
heteroclinic orbits connecting the saddles, andD2 is the same integral evaluated along one of
the two interior heteroclinic orbits. TheD-integral simplifies along these orbits and we obtain:

D1 = 4√
i2i3

π

2
− sin−1

µ
(

1
i2
− 1

i3

)
A

 , (110)

D2 = 4√
i2i3

−π

2
− sin−1

µ
(

1
i2
− 1

i3

)
A

 , (111)

where

A =
√(

1− i2

i3

)(
1− µ2

i2i3

)
. (112)

In our numerical integrations, we follow [13] and takei2 = −0.3 andi3 = −0.7. We also
chooseµ0 = 0.25, see Equation (99). As an example of our computations, we find that for
ε = 0.001, the initial conditionx3(0) = −0.821034, x2(0) = 0, x1(0) = 0.570879, which
corresponds to energye(0) = −0.321905 and phaseφ(0) = 0, leads to a basin boundary. We
find Tc = 0.191746 and hence the frozen value ofµ for separatrix crossing isµc = 0.058254.
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Table 1. ε = 0.001, x3(0) values for basin boundaries (x2(0) = 0). Tc,µc andφc refer to
separatrix crossing, as predicted by the averaged Equations (96) and (97).

x3(0) x3(0) x3(0)

Regions original averaged error Tc µc φc

equations equations

LM −0.821034 −0.820697 −0.000337 0.191746 0.058254 9.836390

MR −0.814109 −0.814138 +0.000029 0.197470 0.052530 10.25

RM −0.813277 −0.812912 −0.000365 0.198528 0.051472 10.326922

ML −0.806102 −0.806132 +0.000030 0.204306 0.045694 10.75

LM −0.805437 −0.805045 −0.000392 0.205222 0.044778 10.817452

Table 2. ε = 0.0001,x3(0) values for basin boundaries (x2(0) = 0). Tc,µc andφc refer to separatrix
crossing, as predicted by the averaged Equations (96) and (97).

x3(0) x3(0) x3(0)

Regions original averaged error Tc µc φc

equations equations

LM −0.8183775 −0.8183733 −0.0000042 0.1937874 0.0562126 99.8335524

MR −0.8177132 −0.8177135 +0.0000003 0.1943644 0.0556350 100.25

RM −0.8175869 −0.8175826 −0.0000043 0.1944787 0.0555213 100.3325891

ML −0.8169202 −0.8169205 +0.0000003 0.1950563 0.0549437 100.75

LM −0.8167953 −0.8167910 −0.0000043 0.1951691 0.0548309 100.8316258

The associated value ofφc is computed to beφc = 9.836390, while the values ofD1 andD2

are found to beD1 = 15.0075 andD2 = −12.4145. Referring to Equation (98), we find

1

2
+ D1+D2

2D1
= 0.58639,

which equalsφmod
c , showing that the stated initial condition approximately lies on a basin

boundary.
Our results are displayed in Tables 1 and 2, forε = 0.001 and 0.0001, respectively. These

tables give the values ofx3(0) corresponding to five consecutive basin boundaries, as shown
in Figure 7. For each entry we also give the associated values ofTc, µc andφc. Recall that
[φc], the integer part ofφc, represents the number of complete revolutions a motion makes
while approaching the heteroclinic orbits. Note that[φc] is around 10 or 100 for the entries in
Tables 1 and 2, respectively.

In our model, onceµ achieves the value of zero, the motor is turned off andµ remains
zero. Sinceµ goes from its initial valueµ0 = 0.25 toµ = 0 in finite time (= µ0/ε), capture
consists of entering a separated region and eventually circulating around the associated center
in anε = 0 periodic orbit, cf. Figure 2. In addition, some motions which start in the region
surrounding the North pole, while being attracted to one of the regions L, M or R, do not get
captured in the time interval before the motor is turned off. These motions remain circulating
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Figure 7. Sketches of orbits which correspond to captured orbits (top) and orbits which are basin boundaries (bot-
tom) as a function of the initial conditionx3(0). The other initial conditions arex2(0) = 0, x1(0) = √1− x3(0)2

(see Tables 1 and 2). Since the orbits circle the origin many times before being captured, the initial portion of each
trajectory has been omitted. Since once an orbit has been captured, it circles the associated slow-varying center
many times, the final portion of each captured trajectory has also been omitted.

around the North pole. The measure of such motions goes to zero asε goes to zero (see
Figures 8 and 9).

10. Conclusions

From Tables 1 and 2 we see that the asymptotic theory agrees excellently with direct numerical
integration of the original differential equations of motion. From Table 1, it can be seen that
for the five entries, the total bandwith is 0.821034− 0.805437≈ 0.0156, so the maximum
error of about 0.0004 is about 2.5% forε = 0.001. The comparable calculation forε = 0.0001
is, from Table 2, about one-tenth as much. This excellent agreement should not be unexpected
since the asymptotics constitute a second order theory. This is true in spite of the fact that only
the lowest order terms are maintained! The explanation for this is that because of symmetry,
the second order terms vanish, making what would normally be a first order theory valid to
second order. To see this, compare Equations (45) and (46) with Equations (59) and (60).
The symmetry requirement is met by the dual-spin spacecraft equations, but, in addition, it is
required that the symmetric initial conditionx2(0) = 0 be invoked.

The theoretical results for the probabilities of capture given in Equations (77–79) agree
quite well with the numerical computations. Using a representative value ofµ = 0.05, Equa-
tions (110–112) giveD1 = D4 = 14.82 andD2 = D3 = −12.60 from which we obtain the
theoretical probabilities of capture P(M) = 85.0%, P(L) = P(R) = 7.5%. The numerical
computation for the probabilities of capture are obtained by computing ratios of the changes
in the initial values ofx3(0) in the last five entries in Tables 1 and 2. There are four bands, two
Ms, one L and one R. Forε = 0.001 we obtain P(M) = 90.4%, P(L) = 5.3%, P(R) = 4.3%,
whereas forε = 0.0001 we obtain P(M) = 84.1%, P(L) = 8.0%, P(R) = 7.9%. Note that
the agreement with theory is better for the smaller value ofε. Also note that these probability
computations assume that the initial conditions lie in the region of phase space filled by the
alternating bands which encircle the L, M and R capture regions, cf. Figure 8.

Although the asymptotic method presented in this paper improves our understanding of the
dynamics of resonant capture, we were not able to express our final results in analytic form.
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Figure 8. Regions of attraction as obtained by numerical integration of Equations (1–4). Parameters areε = 0.005,
i2 = −0.3, i3 = −0.7, µ0 = 0.25. Letters represent capture regions: L= Left, R= Right, M= Middle (South
pole), N= North pole. In order to better see the continuity of the regions, the unit sphere (7) has been punctured at
the North and South poles, then opened up into a cylinder, and finally unrolled. The vertical axis isx1, going from
−1 to 1. The horizontal axis is arctan(x2/x3) going from−3π/2 toπ/2. E.g., a point lying in a region marked L
means that a motion with the corresponding initial condition is captured into the left capture region. Motions in
region N, while being attracted to one of the regions L, M or R, have not had enough time to be captured in the
time intervalµ0/ε, before the motor is turned off atµ = 0.

Figure 9. Basins of attraction in initial condition space. The data of Figure 8 is here displayed as a projection
of the bottom half of the sphere (7) from infinity onto thex3(0) − x2(0) plane. Initial conditions in the white,
black and dotted regions are attracted respectively to capture regions M,L and R. Results obtained by numerical
integration of Equations (1–4). Parameters arei2 = −0.3, i3 = −0.7, ε = 0.005,µ0 = 0.25.
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In general, there are two barriers to obtaining closed form expressions for the critical initial
conditions leading to the basin boundaries. Firstly, the integrals occurring in the averaged
equations, namely Equation (61) forω(e, T ) and Equation (64) forD(e, T ), as well as the
Melnikov integrals, Equation (67) for the quantitiesDi, need to be evaluated. We were able
to do this in closed form using elliptic integrals. Secondly, the resulting averaged equations,
Equations (59) and (60), need to be integrated to obtain the time of separatrix crossing,Tc

and associated phaseφc. We were not able to do this in closed form, and used numerical
integration instead.

Previous studies of this problem [11, 13, 26] have noted the key difficulty of dealing with
the crossing of the slowly moving separatrices. The present work offers a solution to these
difficulties by supplementing the averaged equations with energy changes represented by
Melnikov integrals in the neighborhood of the slowly moving separatrices. This results in
a clear understanding of how the question of capture is influenced by the phaseφc which a
motion has when it reaches the instantaneous separatrix.
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Appendix A: Change of Variables

Various expressions in this appendix are well known change of variables formulas from
(q, p, T ) to (H, ψ, T ). Since H= H(q, p, T ), by taking partial derivatives with respect to
H, ψ, T , we obtain

1= HqqH + HppH, (113)

0= Hqqψ + Hppψ, (114)

0= HqqT + HppT + HT . (115)

There are similar expressions following fromψ = ψ(q, p, T ):

0= ψqqH + ψppH, (116)

1= ψqqψ + ψppψ, (117)

0= ψqqT + ψppT + ψT . (118)

Since H= H(q, p, T ),

dH

dt
= Hq

dq

dt
+ Hp

dp

dt
+ εHT . (119)

Using Equations (10), (11), (17), (18), and (114), this becomes Equation (19):

dH

dt
= ε(g1Hq + g2Hp + HT ). (120)
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A similar expression for dψ/dt using Equation (117) yields Equation (20):

dψ

dt
= ω(H, T )+ ε(g1ψq + g2ψp + ψT ). (121)

Although Equations (120) and (121) will be satisfactory for our purposes, they are somewhat
incomplete from a theoretical and practical point of view since we wish to express our func-
tions as functions of H andψ , where we assume we have been successful in determiningq

andp as functions of H andψ . We write a few additional formulas (which we do not use
in this paper and are particularly well known for Hamiltonian systems) in order to express
Equations (120) and (121) as functions of H andψ . The Jacobian of the transformation can
be determined using Equations (17), (18), (12), (13) and (113):

qψpH − pψqH = f1pH − f2qH

ω
= γ

ω
(HppH + HqqH) = γ

ω
. (122)

Individual partial derivatives can now be determined from Equations (113–115):

Hp = ωqψ

γ
, Hq = −ωpψ

γ
, HT = −(HqqT + HppT ) = ω

γ
(pψqT − qψpT ), (123)

and from Equations (115) and (116):

ψp = −ωqH

γ
, ψq = ωpH

γ
, ψT = −(ψqqT + ψppT ) = ω

γ
(−pHqT + qHpT ). (124)

Since H is known explicitly butψ is not, these may be treated differently. These expressions
are similar to those derived in [2, 8].

Appendix B: Near-Identity Transformation for Averaging

In this appendix we derive Equations (42) and (43). Using the chain rule on Equations (38)
and (39),

d

dt

[
H
ψ

]
= [ I + εA ]

d

dt

[
e

φ

]
+
[

ε2H1T
+ · · ·

ε2ψ1T
+ · · ·

]
, (125)

where

εA =
[

εH1e
+ ε2H2e

+ · · · εH1φ
+ ε2H2φ

+ · · ·
εψ1e
+ ε2ψ2e

+ · · · εψ1φ
+ ε2ψ2φ

+ · · ·
]

. (126)

Solving for d/(dt)

[
e

φ

]
, we obtain

d

dt

[
e

φ

]
= [ I + εA ]−1

{
d

dt

[
H
ψ

]
−
[

ε2H1T
+ · · ·

ε2ψ1T
+ · · ·

]}
. (127)

The near identity matrix is easily inverted, [I + εA ]−1 = I−εA+ε2A2−· · ·, and the standard

form is used to evaluate d/(dt)

[
H
ψ

]
:

d

dt

[
e

φ

]
= [I − εA + ε2A2]

[
εf (H, ψ, T )

ω(H, T )+ εg(H, ψ, T )

]
− ε2

[
H1T

ψ1T

]
+O(ε3). (128)
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For our purposes, we already have sufficient information from Equation (128) concerning the
angleφ, namely

dφ

dt
= ω(H, T )+ εg(H, ψ, T )− εω(H, T )ψ1φ

+O(ε2). (129)

Shortly, we will be more precise concerning Equation (129) since H andψ are on the right-
hand side of Equation (129). We have to work harder to obtain the accurate information we
need concerninge. The leading-order part ofε2A2 follows from Equation (126), but we will
actually only need one entry of the following:

ε2A2 = ε2
[

H2
1e
+ H1φ

ψ1e
H1φ

(H1e
+ ψ1φ

)

ψ1e
(H1e
+ ψ1φ

) H1φ
ψ1e
+ ψ2

1φ

]
+O(ε3). (130)

Thus, from Equation (128) we obtain

de

dt
= εf (H, ψ, T )− εω(H, T )H1φ

− ε2ω(H, T )H2φ
− ε2f (H, ψ, T )H1e

− ε2g(H, ψ, T )H1φ
+ ε2ω(H, T )H1φ

(H1e
+ ψ1φ

)− ε2H1T
+O(ε3). (131)

We use the near identity transformation (40) and (41) to relate the old variables to the new
ones, so that using Taylor series we obtain

ω(H, T ) = ω(e, T )+ εωe(e, T )H1(e, φ, T )+O(ε2), (132)

f (H, ψ, T ) = f (e, φ, T )+ ε(feH1+ fφψ1)+O(ε2), (133)

where all expressions are now in terms of the new variablese andφ. A similar expression for
g exists. When Equations (132) and 133) are substituted into Equations (129) and (131), we
obtain Equations (42) and (43).
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