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Abstract. We consider the rotational motion of a spacecraft composed of two bodies which are free to rotate
relative to one another about a common sifa® motor on one of the bodies provides a small constant internal
torque which influences the relative motion of the two bodies, and which may influence the orientation of their
common shaftS. Resonant captureefers to the phenomenon that the spacecraft may end up in one of several
possible orientations, including a nearly flat spin (transversg)ton addition to the expected simple rotation
abouts.

The method of averaging is used to treat the original equations of motion, and it is shown that the essential
mathematical problem involveseparatrix crossingn a problem with slowly moving separatrices. Energy changes
represented by Melnikov integrals are used to supplement the averaged equations in the neighborhood of the
heteroclinic motions. The method is used to predict which initial conditions lead to capture into each of three
distinct capture regions. The asymptotic results are compared to those obtained by direct numerical integration of
the equations of motion.
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1. Introduction

A dual-spin spacecraft consists of two bodies, called the platform and the rotor, attached to
each other by a shaft about which they can rotate relative to one another, see Figure 1. In
addition, the entire assemblage can rotate freely in space. A motor acting along th8 shaft
may be utilized to apply an equal and opposite torque to both bodies. The motor may be used
to control the orientation of the spacecratft in space. In this work we will be concerned with
accomplishing a rotational pointing maneuver with a small constant torque supplied by the
motor.

We model the platform and rotor as rigid bodies. The rotor is assumed to be axisymmetric
and balanced, with its symmetry axis coinciding with the siafthe platform is assumed to
be asymmetric and balanced. Hbeadancedmeans that the shaft ax§sis a principal axis for
the moment of inertia tensor, i.e., no product of inertia terms are present.aXisgmmetric
means that all principal moments of inertia in directions orthogonéiae equal. We assume
that the initial state of the system and the physical parameters are chosen such that the applied
torgue is able to drive the system towards what turns out to be one of three different classes of
motions, a process calledsonant captureEach of these classes of motions will be shown to



160 R. Haberman et al.

1
S
R

2 )\

3

Figure 1. Model of a dual-spin spacecraft consists of an axisymmetric rBtand an asymmetric platforrf.
Their common shaff is directed along axis 1. Axes 1-2-3 are fixedPin
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Figure 2. In the parameter range 9 1 < —ip, ¢ = 0 (u fixed), Equations (1-4) exhibit four heteroclinic orbits
which connect two saddle points. Displayed is a projection from the North pole of the sphere (7) onto the plane

x1 = —1. In addition to the separatrices, four periodic orbits are also shown. Dots represent centers. The origin
represents the South pole of the sphere. The North pole lies at infinity in this projection (cf. Figure 3).

(D

lie in capture regionsvhich are separated from each other by slowly moving separatrices, see
Figure 2. We shall be concerned with predicting which initial conditions lead to capture into
each of these capture regions.

Our procedure will be to follow the work of Haberman and his colleagues [2—4, 8], and
replace the original equations of motion by averaged equations. The averaging process is not
valid in the neighborhood of the slowly moving separatrices, however, and energy changes
represented by Melnikov-type integrals are used to handle the problsepafatrix crossing

The problem of resonant capture in dual-spin spacecraft has been studied recently in a
number of research papers. Kinsey et al. [15, 16] studied spinup in a dual-spin spacecraft in
which the rotor was axisymmetric with small imbalance, while the platform was axisymmetric
and balanced. They used the method of averaging to show that some initial conditions lead
to pass-throughwhile others lead to capture. Rand et al. [21] and Quinn et al. [18] studied a
simpler model problem and showed that capture corresponded to the entry of a given trajectory
into a region of phase space bounded by a slowly moving ‘instantaneous separatrix’. In Hall
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and Rand [13] the rotor was taken as axisymmetric and balanced, while the platform was
asymmetric and balanced. Instead of visualizing the dynamics on a sequence of momentum
spheres, they used a two-dimensional space with coordinates of energy and a slowly-varying
parameter to display the motion of the system. They obtained averaged equations of motion,
which turned out to involve elliptic functions. They noted that numerical integration of the
averaged equations was inaccurate in the neighborhood of separatrix crossings, since the
averaged equations are not valid near the instantaneous separatrices. Hall [11] used a similar
system, reversing the roles played by rotor and platform, to discuss resonant capture during
despin of the axisymmetric platform. He presented a probabilistic treatment of capture based
on numerical integration of the original (unaveraged) equations. Tsui and Hall [26] used a
similar approach to treat the system dealt with by Kinsey et al. [15, 16]. Hall [12] used a
similar approach to treat the problem of an asymmetric platform attach®datasymmetric

rotors. He showed that although the problem is describedy by 3 first order ordinary dif-
ferential equations, conservation of angular momentum and the method of averaging could be
used to reduce the number of equations to one for small spinup torques. The reader is referred
to [12] for an extensive list of related references. All these papers share the essential difficulty
of how to handle the crossing of the separatrix. The special feature of the present work is
that separatrix crossing is treated using consistent asymptotic approximations via Haberman’s
approach.

2. Summary of Our Approach

For the reader’s convenience we offer the following summary of the approach used in this
paper. The process of resonant capture will be shown to consist of the gradual approach
towards the separatrix loops of Figure 2 of motions which start outside these separatrices.
After circulating around the loops in general many times, a given motion eventually crosses
the instantaneous separatrix and enters one of the three separated regions. Just before a motion
reaches the instantaneous separatrix, it must pass through a region close to one of the saddles
which we will call the entrance saddle approactising Melnikov integrals, we will be able

to compute the energy needed at the entrance saddle approach in order for a given motion to
lie on the basin boundaries of the separated regions, i.e. to lie on the stable manifold of the
saddle-likenormally hyperbolic motionsThen we will use equations obtained by the method

of averaging, which are valid in the regions away from the separatrices, to determine which
initial conditions lead to motions that pass through the entrance saddle approach with the
appropriate energy so as to lie on the various basin boundaries.

3. Equations of Motion

We consider a spacecraft consisting of an axisymmetric, balanced rotor and an asymmetric,
balanced platform, see Figure 1. The components of the dimensionless angular momentum
vector (x1, xp, x3) are referred to axes fixed in the platform with principal ais0, 0) di-
rected along the shaft, and with perpendicular ax¢8, 1, 0) and(0, 0, 1) also corresponding
to principal axes for the spacecraft. We present the following equations of motion without
derivation. For a derivation, see [13, 14].

dx;

rrle (i2 — i3)Xx2x3, (1)
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dxp

Fre (izx1 — p)xs, (2)

dxg

rre —(i2x1 — pxz, (3)

?j—l; = —¢, 4)
where

xi = hj/h, =123,

h = \/h%+h3+h3,
h1 = Lo+ Lo,
hy = Dhwy, hz = lws,

I; = moment of inertia of spacecraft about axis i =1, 2, 3,

I, = moment of inertia of rotor about axis 1 (shé&l,
w; = angular velocity of platform about axis i =1,2,3,
ws; = angular velocity of rotor about axis 1 (shaf},

ij = 1-1,/]I;, j=23

I, = I, — I, = moment of inertia of platform about axis 1 (shéjt

uw = h,/h = dimensionless angular momentum of rotor about axis 1 (f)aft
he = I(w; + w;) = angular momentum of rotor about axis 1 (sh#)ft

t = hi/l, = scaled time

f = real time

e = galp/ I,
g« = despin torque applied by platform on rotor about the negative 1 axis (Shaft

Note that the assumption of constant torgyen Equation (4) gives

M = o — Et. (5)

We shall generalize this to

du
= - <0. 6
w = p(et), e (6)

Multiplying Equations (1-3), respectively by, x», x3 and adding shows that angular mo-
mentum is conserved (even wherns not constant) in the form:

X7 + x% + x3 = constant= 1, 7
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Figure 3. Orbits of Equations (1-4) fgr = 0.1, ¢ = 0 (u fixed), a projection of the sphere (7) from infinity onto
thexs—x1 plane. Dots represent centers. The separatrices of Figure 2 appear here as two intersecting straight lines.
Periodic orbits encircling each of the centers appear as curved line segments.

where the constant of integration is unity in view of the definition of dimensionless angular
momentumy; = h;/,/h3 + h5 + h3. In this paper we analyze the dynamical system (1-3),
(6) on the unit sphere (7).

We begin by briefly reviewing some features of the system whés constant (see [13]
for more details). As in [13] we shall treat oblate spacecrafts for wijch- I, > I3, or,
equivalently,iz < i, < 0. E.g., looking ahead towards our numerical example, we shall take
iz = —0.7 andi, = —0.3. Equations (1-3) possess two, four or six equilibria, depending on
the value ofu. In the range we shall be interested in<Qu < —iy, there are six equilibria on
the sphere (7), four centers and two saddle points, see Figure 3. There are centers at the North
(1,0,0) and South {1, 0, 0) poles. There are two more centers located symmetricalty in
atx; = w/iz, x2 = 0,x2 = 1 — (u/iz)? The saddle points are locatedxat= j/ iz, x5 =
1 — (n/i2)? x3 = 0. There are four heteroclinic orbits which connect the two saddle points
as shown in Figures 2 and 3. As shown in [13], a pitchfork bifurcation occuis at —i,
(= 0.3 here) in which the two saddles coalesce with the center at the South pole, creating a
saddle there. Another pitchfork occursiat= —i3 (= 0.7 here) in which the two symmetrical
centers combine with the saddle at the South pole to create a center there.

Whenp is constant, Equations (1-3) admit the following energy-like integral (which we
call H after the Hamiltonian, even though this system will be shown not to be Hamiltonian)

2
H = —2uxy + isx2 + (is — ip)x% — iz +ip + ’l‘— . 8)

2
We have chosen the constant in Equation (8) so that H is zero at the saddle points. The
Hamiltonian (energy) is positive in the regions immediately surrounding the North and South
poles, while the energy is negative in regions immediately surrounding the symmetric centers.
Thus, for constanj, all the solutions are periodic, corresponding to closed curves on the
sphere, except for the heteroclinic orbits.
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Figure 4. Numerical integration of Equations (1-4) showing how three different initial conditions lead to capture
into each of three capture regions. Parametergpate—0.3,i3 = —0.7,& = 0.003, ug = 0.25. Initial conditions
arex2(0) = 0 andx3(0) = —0.945, —0.955, and—0.965, andx1(0) > 0 given by Equation (7). Each initial
condition produces a trajectory which is respectively captured into the left, middle and right capture regions.
Projection is from infinity onto thez—x» plane.

The foregoing conclusions no longer hold true wheis permitted to change slowly in
time. In this case H ceases to be a first integral and varies according to

dH  _du "

The points on the sphere which were equilibria for constaim general cease to be equilibria
when u changes slowly, and will be referred to slswly-varying equilibria The North and
South poles of the sphere are exceptions and remain true equilibria evenuvdmamges in
time. The saddle points are structurally stable features, and for stpglf (dr) the slowly-
varying saddles give rise to saddle-like normally hyperbolic motions. The slowly-varying
centers, however, will in general lose their center-like quality and will become hyperbolic.
The dynamics of the system (1—-4) turn out to involve a competition between the three
regions associated with each of the slowly-varying centers, see Figure 4. Our goal in this
work is to determine which initial conditions lead to capture into each of these regions.

4. Energy-Angle Coordinates

In order to conveniently apply the method of averaging to this problem, we change vari-
ables to what we caktnergy-angle coordinatgsimilar to, but not the same as action-angle
variables). This is accomplished by first reducing the three-dimensional system (1-3), to a
two-dimensional system with coordinatesandx, by using Equation (7) to eliminate.

We rewrite Equations (1) and (2) in the form

d

d—(f = filq, p.T) +eg1(q, p. T), (10)
dp

— = falq, p, T) + e g20q, p, T), (11)

dr
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where
g = x1, p=x, T =c¢t,
Jf1 = (i2 — iz)xx3 = (i2 — i3) px3(q, p),
f2 = (iax1 — wxz = (isg — wxs(q, p),
g1 = g2 =0, included here to make the analysis more general

Equations (10) and (11) can be made to resemble a Hamiltonian system by noting that

Ji=v H,, 12)

fa=—y Hg, (13)
where

y = —x3(q, p)/2. (14)

Note that the general formulation (10) and (11) with (12) and (13) includes the case where the
unperturbed system is Hamiltonian {ifis a constant). This is not the case for Equations (1),
(2), (3), however.

Now we transform to energy-angle coordinates ¢H. We normalize the angle or phase
so that the coordinateg (p) repeat wheny is increased by one. The coordinate system is
defined by the unperturbed problem wijitfixed. The angle) is defined by

v dp

q

| 7asm-

w(H, T) fi@,p,T) f2@.p.T)’
qc(H,T) pc(H,T)

(15)

wherew (H, T) is the frequency related to the usual period of the nonlinear oscillator involving
the closed line integraf:
1 B dg B dp
wH,T) fiq,p,T) f(q.p.T)

The integrals are performed with H arfdfixed. The lower limits correspond to where we
chooseyr = 0. Given Handyr, ¢ = q(y,H, T) andp = p(y¥,H, T) are determined from
Equation (15) and are periodic ih (with period 1. By takinga/(dy) of Equation (15), we
obtain the exact equations

wqy = fl(q’ P, T)’ (17)
wpy = f2(q, p,T). (18)

In Appendix A, we use the chain rule for partial derivatives to derive the transformed
equations of motion;

(16)

dH
a = g(ngq + gZHp + HT)’ (19)
dy
— =wMH,T)+ S(gllﬁq + ngp + ¥r). (20)

dr
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For the dual-spin spacecraft problem (1-3) and (6), we lgave g, = 0 and Equations (8)
and (9) give

dH 7

_dt = —2eur (q - 2) ) (21)
d

Y — o 1)+ ey (22)

Even though we will be working to higher orderanit turns out that we will not need to know
much about)r.

5. Symmetries

Our results require the use of particularly accurate averaged equations which depend on certain
symmetries with respect to the phase anglef the system as they apply especially to the
perturbations in Equations (19) and (20). We, therefore, examine the symmetries of the system.
Symmetry inp = x, will be very important for us. We note that the Hamiltonian given by
Equation (8) is symmetric ip = x,, by which we mean Ky, —p, T) = H(q, p, T). When

the Hamiltonian is symmetric we chooge= 0 atp = 0 (usually the minimum of), and thus

the lower limit of integrationp.(H, T) = 0 in Equation (15). In general, we neg¢dq, p, T)

to be an odd function op and f>(q, p, T) to be an even function gf. This requires that

v (g, p, T) be an even function g, a condition which we assume is valid. In the case of the
present application, Equations (14) and (7) give- +,/1 — g2 — p2/2, an even function of

p. From the phase portrait,

p is an odd function ofy, (23)

(andgq is an even function of/). Any even function ofp will be an even function ofy, and
any odd function ofp will be an odd function ofyr. First partial derivatives with respect o
of an even function op will be an odd function op (and vice versa). Partial derivatives with
repect tog andT hold p fixed and hence even functions pftay even (and vice versa). Thus

H is an even function op (H is an even function of/), (24)
H, is an odd function op (H, is an odd function off), (25)
H, is an even function op (H, is an even function of), (26)
Hz is an even function op (Hr is an even function of/). 27)

Sincep is an odd function off, it follows that

¥ is an odd function op (v is an odd function of}), (28)
¥, is an even function op (v, is an even function of/), (29)
¥, is an odd function op (v, is an odd function of}’), (30)

Yr is an odd function op (v is an odd function of}). (31)
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The evenness and oddness of various derivatives with respgctém also be derived using
the expressions for them in Appendix A.

We assume the perturbatiary,(g, p, T) is an even function ofp, and we assume
eg2(q, p, T) is an odd function ofp. These are the same kind of symmetries that arise for
damping in a conservative system, so that Bourland and Haberman [2] have referred to this
type of perturbation as ‘purely dissipative’ (see also [8]). Thus,

g1 is an even function op (g1 is an even function o), (32)
g is an odd function op (g» is an odd function off). (33)

We put the energy-angle equations (19) and (20) in what is called standard form [1, 23]:

Z—': =ef(H, ¥, T), (34)

Z—f =owH,T)+egMH, ¢, T), (35)
where

f = gH; + gH, +Hr, (36)

8§ =&Y, + g2¥p + ¥r. (37)

Using Equations (24—-33), it immediately follows that t@¢s) terms in standard form have
the following symmetry:

f is an even function op (f is an even function of), (38)
g is an odd function op (g is an odd function of}). (39)
In the present applicationf = —2ur(qg — (/i) andg = 7, which has the desired

symmetry due to Equation (31).

6. Averaging

In this section, we follow the procedure used in [2, 8] to apply the method of averaging to
the energy-angle equations (34) and (35). The method of averaging allows us to investigate
the effect of slow variation of parameters, and of other perturbations, on the behavior of the
system for long timest(= O(1/¢), T = et = O(1)) by averaging over the faster motion

of the unperturbed system. We will use higher-order averaging [1, 19, 20, 23] which involves
transforming the governing Equations (34) and (35) to a simpler form via a near-identity
transformation:

H=e+cHi(e, ¢, T) + e’Ho(e, ¢, T) + -, (40)

Vo =¢+eyule, ¢, T) +eYale, o, T) + -+, (41)
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where H and; are periodic functions op. Heree and¢ are the transformed or averaged
versions of H andy. We will require thatfo1 H;(e, ¢, T)dp = 0 so thate is the average of the
energy H. We also choog%1 Yi(e, ¢, T)dg = 0.

In Appendix B we show that when Equations (40) and (41) are introduced into Equa-
tions (34) and (35), the resulting equationsecend¢ become:

de

= e(f — oHy,) + e2(M — wHy,) + 0(e3), (42)

dp 2

a —Cl)(e, T)+€(g_w‘ﬁ1¢ +a)eHl)+0(8 )7 (43)
where

M = —wHiHy, + foHi + fe¥1 — fH1, — gHy, + @oHy, (Hy, + ¥1,) — Hy,. (44)

The right-hand sides of Equations (42) and (43) are periodic functiogs kffollows that
(de)/(dr) and(d¢)/(dr) satisfy the averaged equations

© o)+ + 06, (45)
(3_? =w(e, T)+e(g) + O(?), (46)

where we have introduced the notatigf) = fol fd¢ for the average (mean) of any function

f forfixede andT". We have noted that for examplld,,) = 0 because kis periodic ing, and

we have assumed that Has zero average. It will be helpful to introduce the fluctuating (or
oscillatory) part of a periodic function defined to be the difference between it and its average:

{(f1=7r—-(. (47)

By comparing Equations (42) and (43) to Equations (45) and (46), we find equations that
define the near identity transformations

wHy, = {f}, (48)
wHp, = (M), (49)
ww1¢ = {g + w.H1}. (50)

In order for H to have zero average, we integrate Equation (48) and obtain

¢ ¢
1 1
H1=—/{f}d¢’——</{f}d¢’>- (51)
o) )
0 0

Since from Equation (38) is an even periodic function @, it follows that{ f} is an even
periodic function with zero average. Thuﬁf{f} d¢’ is an odd periodic function, which
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therefore has zero averag(%"’{f} d¢’) = 0. Thus H is an odd periodic function op
satisfying

¢
1
m=5fum¢ (52)
0

Expressions for lland+r;, exist but we do not need them in this paper.
Symmetry results that we need are

H; is an odd function o, (53)
Hy, is an even function o, (54)
H, is an odd function o, (55)
Hi, is an odd function oé. (56)

We also need symmetry results fgr which can be obtained from Equation (50). Since H
from Equation (53) ang from Equation (39) are odd functions ¢f it follows that

Y1 IS an even function ap, (57)
Y1, is an odd function 0. (58)

We now simplify Equations (45) and (46). From Equation (g9% an odd function ofp,

and thus{g) = 0. From Equations (38), (39) and (53-58), it follows thatdefined by Equa-

tion (44) is an odd periodic function @f, and hencéM) = 0. The leading-order equations for

the averaged energy and phase are accurate to higher-order (using the symmetry arguments)
in the sense that

de

=&(f) + 0(&?), (59)
dr
z—‘f =w(e, T)+ 0. (60)
Using Equation (17), we have
fdg
= wle, T Ee——— 61
) ( )% f1(q. p, T) (61)
where from Equation (36) and the near-identity transformation we have:
= gieqg + goep +er. (62)
The integral in Equation (61) should be computed at fixathd 7', so that
<f> = —(!)(e, T)D(e’ T)v (63)

where the dissipation integrél(e, T) is defined by
fdg

DeD=-¢Fas

(64)
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Figure 5. The four heteroclinic parametef?; of Equation (67) are Melnikov integrals. The capture regions L, M

and R are marked. The origin here corresponds to the South pole of the sphere (7), and to motion of the spacecraft
about the common shaft Capture into regions L and R corresponds to more general motions of the spacecratft,
including the possibility of a flat spin, that is, a motion transversg to

Here D(e, T) is approximately the change in energy over one periodic orbit. In the dual-
spin spacecraft example, Equation (1) gives= (i, — i3)xox3 = (i — i3) px3(g, p) and
Equation (21) gives

f=er=-2ur (f] - %) . (65)

We have shown that the leading-order averaged energy and angle equations (59) and (60)
obtained by the method of averaging are more accurate than one would have anticipated.
These averaged equations are valid away from the separatrices of the unperturbed problem.
However, as the slowly varying strongly nonlinear oscillatory orbits approach an unperturbed
heteroclinic orbit, the method of averaging fails. Nevertheless, we will show in the next section
how the averaged equations may be supplemented in order to calculate the boundaries of the
basin of attraction.

7. Separatrix Crossing

The method of averaging fails near an unperturbed heteroclinic orbit because the period of
oscillation approaches infinity. The unperturbed heteraclinic orbits have been defimed by
0. The slow variation Equation (59) predicts a slow tiffie= ¢z at which an unperturbed
heteroclinic orbit is passed. Since it is known [24] that the time between saddle approaches
is logarithmically largeO (In ¢) on the fast scale but smallO (e In¢) on the slow time scale
T = &t, the slow time variable may be frozen Bt as an approximation valid for passage
through the unperturbed heteroclinic orbit. This is valid even though the time predicted for
crossing the unperturbed heteroclinic orbit by slow variation theory is not valid. See [2] where
it is shown that the time error i© (1) in the fast time variable, but is small in the slow time
variableT = et.

To analyze nearly heteroclinic orbits, we use techniques originally developed for nearly ho-
moclinic orbits. Timofeev [25], Tennyson et al. [24], and Bourland and Haberman [2] showed



Resonant Capture and Separatrix Crossing in Dual-Spin Spacedratt

that the slow passage through an unperturbed homoclinic orbit consists of a large sequence
of nearly homoclinic orbits. For our case, the solution consists of a large sequence of nearly
heteroclinic orbits whose phase portrait is shown in Figure 5. Well-known methods for nearly
homoclinic orbits may be used. Along these nearly heteroclinic orbits (see, for example, [6]),
the leading order change (dissipation) in the energy H over a complete orbit from one saddle
approach to the next can be appoximated by the heterodeinikov function(calculated

along an unperturbed heteroclinic orbit):

(g1Hy + g2H, +Hy) dg
filg,p. T)

AH =~ ¢ f(ngq + g2H, + Hy) dr = , (66)

where f1 = H,y. Extensions like Equation (66) for problems with slow variation were
described in [7, 22].

This leads us to define four different heteroclinic paramefeysD,, D3, D4, as path
integrals along the four different heteroclinic orbits, see Equations (36) and (64) and Figure 5:

(g1Hy + g2H, +Hy) dg
fi@.p,T)

In the case of slow variation these integrals depend’dout as described in the previous
paragraph can be frozen At predicted by slow variation theory. Note that the dissipation
integral for nonlinear oscillators approaches the appropriate sum of the heteroclinic dissipation
functions. Since the energy is positive in the region marked M in Figure 5, but the energy is
negative in the regions marked L and R, in order for motions to be able to be captured into each
of the three capture regions, the following restrictions must be satisfied by the heteroclinic
dissipation parameters:

D =—

(67)

D3+ D4 > 0, (68)
D1+ D, > 0, (69)
D>+ D3 < 0. (70)

By adding Equations (68) and (69) and comparing that with Equation (70), it follows that
D1+ D4 > 0, (71)

so that the periodic orbits which surround the three capture regions (see Figure 3) will ap-
proach an unperturbed heteroclinic orbit. For the dual-spin spacecraft, two of the dissipation
mechanisms along the heteroclinic orbits are identical, Ihus= D4 and D, = D3 so that

there are only two parameters. We assume

Dl > 0, D2 < 0, D3 < 0, D4 > 0, (72)

with Equations (68) and (69) since we show numerically this corresponds to our specific case.
Interesting cases can arise if these inequalities (72) are violated with Equations (68—71) being
satisfied [9].

There is a competition between three capture regions which we call left (L), middle (M),
and right (R) for the cartoon shown in Figure 5. The boundaries of the basins of attaction
are the stable manifolds of the saddle points, and they are sketched in Figure 6 near the
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Figure 6. The stable manifolds of the saddle points (marked with dots) are the boundaries of the basins of attrac-
tion. The neighborhood of the upper saddle (markgds theentrance saddle approacfihe energywg that a
trajectory has a#t determines which capture region (L, M or R) it approaches, see Equations (73—76). The energy
predicted by the method of averaging may be used at the points mBnkeareg = [¢p. — ((D4/2)/(D1+ Dy))],

see Equation (83).

unperturbed separatrix at the frozen tiffie Each saddle point has two branches of the stable
manifold. The two saddle points give rise to four branches and thus four thin bands. There are
two thin bands which approach the middle capture region. The bands alternate RMLM and
repeat.

We letwq be the energy at the entrance saddle approach which determines which attractor
the solution approaches:

if 0 < wg < e(D1+ Dy), then capture into R (73)
if e(D1+ Dy) < wg < €Dy, then capture into M (74)
if eD; < wo < (D3 + D4+ D7), then capture into L (75)
if e(D3+ D4+ D1) < wg < €(D4+ D;), then capture into M (76)

From Equations (73—76) the probability of capture is well known [17]:

D1+ Dy
PRy = ——, 77
(R) Dot Ds (77)
D3+ Dy
PL)y=——, 78
)= P 79)
-D -D —D,—D
P(M) = 2 3 2— D3 (79)

+ - .
D1+ Dy D1+ Dy D1+ Dy

The energies (73-76) are determined by the consideration of the change in energy (66) and
(67) from one saddle approach to the next. Before reaching the entrance saddle approach,
all solutions consist of a repeated sequence of nearly heteroclinic @bids. The solu-

tions which are captured into the right capture region follow the repeated sequence of nearly
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heteroclinic orbitsD, D,, while those captured by the left capture region follow the nearly
heteroclinic orbitD; succeeded by the repeated sequebgBs. Solutions captured into the
middle capture region have two possible sequenégsfollowed by repeatedd, D3, and

D, D, followed by repeateds; D,. These sequences represent both the topological sequence
of nearly heteroclinic orbits and the sequence of changes of the energy (66) from one saddle
approach to the next.

8. Boundaries of the Basins of Attraction

In this section we show how to use the averaged energy and phase equations (59) and (60)
to determine the boundaries of the basin of attraction even though the method of averaging
is not valid near the unperturbed heteroclinic orbits. We follow the method of Bourland and
Haberman [2—-4] who showed how to use the averaged equations at the last saddle approach
to determine the boundaries of the basin of attraction for dissipatively perturbed double-well
potentials with and without slow variation. Haberman and Ho [8] extended their method to
dissipatively perturbed autonomous Hamiltonian systems.

The boundaries of the basin of attraction require knowing the energy H to enough accuracy
to account forO (¢) terms. From the near identity transformation (40), using Equation (52) we
have

¢
1
H :e—i—g; /{gleq+gzep+eT}d¢/+O(82). (80)
0

The easiest places to use the method of averaging are those placespwhene integer or
half integer. In the dual-spin spacecraft problem such points correspond to pointscendhe
xz-axes. At these places it holds thatHe + O (¢?) andys = ¢ + O(e). We use the averaged
Equations (59), (60) in whiclv (e, T) andD(e, T) are given by Equations (63) and (64):

% = _80)(67 T)D(ea T)’ (81)
dr

dp

a = a)(e, T), (82)

with initial condition¢ (0) = 0, and we will choose(0) so that the corresponding energy level
corresponds to the boundary of the basin of attraction. We do not distinguish the initial energy
H(0) from the initial averaged energy0) since they differ byO (¢?). From Equation (81)
we compute the tim&, = er. at which the method of averaging predicts the unperturbed
heteroclinic orbit is first reached, thatd$7.) = 0. Once we knowl,, we may determine
the phasep. at whiche = 0 by using Equation (82). For a general initial condition of the
form (¢(0) = 0, ¢(0) arbitrary),¢. will in general be no integer or half-integer. That is, the
averaged equations predict that an arbitrary orbit will intersect the instantaneous separatrices
at a generic point.

As a motion approaches the separatrices on its way to being captured, it generally ‘circles
the wagons’ many times before reaching the region of separatrix crossing. Each complete
cycle around the separated regions accounts for one upiffdfus, we may locate the relative
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position of the point of separatrix crossing (as predicted by the averaged equations). We will
show that it is convenient to defirgg in the following unconventional way:

1 1
pmod— g 204 [qﬁc— 2 D } 3)

" Di+Ds D1+ Dy

whereg™dis the modulus (or fractional part) of the phase relative to the page2) /(D1 +
D,) at which solutions first approach the entrance saddle region, and

L
‘" D1+ Dy

is the integer part of this phase and will be the number of oscillations before capture).
The corresponding change in the energy variablghich occurs as the motion passes
through its last fraction of a cycl¢;“°d can be obtained by approximating the energy dis-
sipation function for the strongly nonlinear oscillatbr(e, T) ~ D; + D4 by a constant
near the unperturbed heteroclinic orbit evaluated at the frozen Timin this case, from
Equations (81) and (82)e¢/d¢p = —eD(e, T), where the frozen time has been used for the
frequencyw (e, T'). Thus, for a partial orbit near the unperturbed heteroclinic orbit

Ae = —(D1+ Da)A®, (84)

where the dissipation has been approximated by a constant. Small percentage errors which
have occurred are not important in this calculation because the leading order ®(&) is

Now since the average energy= 0 at¢., Equation (84) gives the following expression
for the energy alg. — ((D4/2)/(D1 + Da))]:

1
H~ e =g(D1+ Dg)p™ + 5eDa. (85)

Note that the actual energy H is well approximated by the average enatdkis point where
the phase is an integer by the foregoing symmetry arguments.

The energy H when the phase is an integer (85) can be related (see Figure 6) to the energy
wg at the entrance saddle approach as follows:

1
H— Wo = E eDy (86)

since the orbit corresponds to one half of a nearly heteroclinic orbit abhiepology. Using
Equation (85) for H gives

wo = &(D1+ D4)¢£n0d. (87)

Given initial conditions on the averaged eneeg) we can determing™ and hencewy
from Equation (87). However, Equations (73-76) show hoyvdetermines which capture
region the solution approaches. Thus, we can express the basins of attraction in igfi#fs of
which is computed from the averaged Equations (59) and (60) with initial condition= 0
(and only depends on the initial averaged enex@y):

Dy + Dy

if0 < ¢Md <
D1+ Dy

, then capture into R (88)



Resonant Capture and Separatrix Crossing in Dual-Spin Spacedak

D

. D1+ D> 1 .

if — 2 <¢™d - - then capture into M 89
Di+Ds % “DitDa P (89)

. D D D D .

if ——1 < gmod Dt Dat P hen capture into L (90)
D1+ Dy D1+ Dy

. D D D .

jf 23t Dat B ¢ < 1, then capture into M (91)

D1+ Dy

In the case of the dual-spin spacecraft, we have the symnbetey D, > OandD, = D3 < 0
with D; + D, > 0, giving:

D D
if0 < ¢Md < Pt Do , then capture into R (92)
2D,
. D D 1 .
if 21t D2 ¢™" < =, then capture into M (93)
2D, 2
1 D D .
if = <gmd o =4 2L + D2 , then capture into L (94)

2 Ve 2 2D,

1 D D
if =4 21t D2 ¢™9 < 1, then capture into M (95)

2 2D,
Formulas (88-95) also correspond to the boundaries of the basin of attraction (the stable
manifold of the saddle points).

9. Numerical Computations

In this section we apply the asymptotic theory developed above to the dual-spin spacecraft
eqguations. The goal of the computation is to determine which initial conditions lead to capture
into each of the three attractive regions, that is, to find the boundaries of the basins of attrac-
tion. As a check on the theory, we compare its predictions with direct numerical integration
of the original differential equations of motion.

The numerical procedure may be outlined as follows:
Computen (e, T) from Equation (16).
ComputeD (e, T) from Equation (64).
Compute the quantitie®; = D4 and D, = D3 from Equation (67).
Integrate the averaged Equation (81)

PwbhPE

d

d—; — —w(e, T)D(e, T), (96)
with the initial conditione(0) = eg, whereeg is a parameter to be determined. Here
eo, When chosen appropriately, will correspond to a boundary of a basin of attraction.

Integrate Equation (97) untd = 0, and call that timd, that ise(7,.) = 0.
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5. Integrate the averaged Equation (82)

dp (e, T)

T . (97)

with initial condition ¢ (0) = 0. Integrate fron” = 0to T = T,, and call the final value
be, that |S¢(Tc) = ¢.

6. Steps 4 and 5 above will yield a valueggffor each initial conditioreg. Vary eq until ¢,
satisfies one of the conditions:

Di+D, 1 1 Di+D
mod 1 2 1 2
= 0, Y~ A 51 ) 98
o { 2D, '2°2 " 2D } (%8)

in which case the initial conditioip (0) = 0, e(0) = eg) will lie on the basin boundary
separating the region®R,RM,ML,LM,MR}, respectively. Since the basin boundaries
lie close to one another, especially for smaller values tifie hunt for appropriate values
of eg may involve very small increments.

7. In order to compare the predictions obtained by the foregoing calculations with direct
integration of the original differential equations, proceed as follows: replateEqua-
tions (2) and (3) by use of Equation (7). Then integrate the resulting pair of differential
equations with the initial conditiom,(0) = 0 (corresponding te¢ (0) = 0), while varying
x3(0) (corresponding to varying(0)), until a basin boundary is reached.

We now proceed with the details. From Equation (4) we take

From Equation (16) we find

(100)

1 f dx;
w(e,T) ] (iz —iz)xoxs’
In order to simplify this integral, we write Equation (8) in the form:

2
(iy — i3)x5 = Fa(x1, p) —e, Where Fp(x1, p) = iax} — 2ux1 + ‘l‘— +iy—i3. (101)
2

A similar expression foxZ may be obtained by solving Equation (7) fof and substituting
in Equation (8):

2

(i — i3)x = e — F3(x1, ), where Fz(xq, p) = ipx? — 2uxy + M— (102)
7

Equation (100) becomes

1 dx
= f L. where F(xy, 1) = Falx1, 1) — e /e — Fa(xy, ;1) . (103)
w(e, T) F(x1, 1)
It turns out that this integral can be evaluated in closed form [10, 13]:
1 8 K (k) (a—>b)(c—4d)

where k? = (104)

0@, T)  igis Ja—-0b-a) (@a—ob—d’
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where K (k) is the complete elliptic integral of the first kind [5], and> b > ¢ > d are
roots of F>(x1, ) — e = 0 ande — F3(x1, u) = 0. Herea is always the larger root of the,
eguation ana is always the larger root of thg; equation.

Next we findD(e, T) from Equation (64):

)Cl—ﬂ

2_ . 105
F(x1, 1) ! (105)

This integral can also be evaluated in closed form [10, 13]:

__ 2 [id
Dle.T) = "o (G - iz) : (106)

where

D(e, T) = 2%

2_ .2 _
Gebat brr(a® —ap)(1— A, k)) ’ (107)
2K (k)y/a2(1 — a?)(a? — k?)

_C I 1— a2
=o®, Y =sin ‘/—1—k2’ (108)

and whereA (¥, k) is Heuman'’s Lambda function:

a—>b
o’ = ,
a—c

N

2
AW, k) = —LER)F W, K)+ KKEW,K) — K©F ¥, k)], (109)

whereE (k) is the complete elliptic integral of the second ki, k') andE (, k) are the
incomplete elliptic integrals of the first and second kind respectivelyx&ne 1 — k2.

Next we findD, andD». D, is the D-integral (105) evaluated along one of the two exterior
heteroclinic orbits connecting the saddles, @nds the same integral evaluated along one of
the two interior heteroclinic orbits. ThB-integral simplifies along these orbits and we obtain:

4 |n . “(%_é)

Dl_izig[Zsml(A)}’ (110)
4 T . M(%_%>

D, = i2i3[_2_sml(z4)" (111)

where

=5 (- 2) a2

In our numerical integrations, we follow [13] and take= —0.3 andiz = —0.7. We also
chooseug = 0.25, see Equation (99). As an example of our computations, we find that for
¢ = 0.001, the initial conditionk3(0) = —0.821034 x,(0) = 0, x1(0) = 0.570879, which
corresponds to energy0) = —0.321905 and phasg(0) = 0, leads to a basin boundary. We
find T, = 0.191746 and hence the frozen valueudfor separatrix crossing ig. = 0.058254.
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Table 1.¢ = 0.001, x3(0) values for basin boundariesxf(0) = 0). T, u. and ¢, refer to
separatrix crossing, as predicted by the averaged Equations (96) and (97).

x3(0) x3(0) x3(0)
Regions original averaged error Tc e b
equations equations

LM —0.821034 —0.820697 —0.000337 0.191746 0.058254 9.836390
MR —0.814109 -0.814138 +0.000029 0.197470 0.052530 10.25
RM —0.813277 —0.812912 —0.000365 0.198528 0.051472 10.326922
ML —0.806102 —-0.806132 +0.000030 0.204306 0.045694 10.75
LM —0.805437 —0.805045 —0.000392 0.205222 0.044778 10.817452

Table 2. ¢ = 0.0001,x3(0) values for basin boundariesx(0) = 0). T, u. and¢. refer to separatrix
crossing, as predicted by the averaged Equations (96) and (97).

x3(0) x3(0) x3(0)
Regions original averaged error T e dc
equations equations

LM —0.8183775 —0.8183733 —0.0000042 0.1937874 0.0562126 99.8335524
MR —0.8177132 —0.8177135 +0.0000003 0.1943644 0.0556350 100.25

RM —0.8175869 —0.8175826 —0.0000043 0.1944787 0.0555213 100.3325891
ML —0.8169202 —0.8169205 +0.0000003 0.1950563 0.0549437 100.75

LM —0.8167953 —0.8167910 —0.0000043 0.1951691 0.0548309 100.8316258

The associated value ¢f is computed to be,. = 9.836390, while the values d?; and D,
are found to beD; = 15.0075 andD, = —124145. Referring to Equation (98), we find

1 Di+ D>
-+ ——==0.5863
2 + 2D, 9

which equalsp™d, showing that the stated initial condition approximately lies on a basin
boundary.

Our results are displayed in Tables 1 and 2fer 0.001 and 00001, respectively. These
tables give the values af(0) corresponding to five consecutive basin boundaries, as shown
in Figure 7. For each entry we also give the associated valu&s, pf. and¢.. Recall that
[¢.], the integer part of., represents the number of complete revolutions a motion makes
while approaching the heteroclinic orbits. Note that] is around 10 or 100 for the entries in
Tables 1 and 2, respectively.

In our model, once: achieves the value of zero, the motor is turned off anckmains
zero. Sinceu goes from its initial valugiy = 0.25 tou = 0 in finite time & uo/¢), capture
consists of entering a separated region and eventually circulating around the associated center
in ane = 0 periodic orbit, cf. Figure 2. In addition, some motions which start in the region
surrounding the North pole, while being attracted to one of the regions L, M or R, do not get
captured in the time interval before the motor is turned off. These motions remain circulating
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Figure 7. Sketches of orbits which correspond to captured orbits (top) and orbits which are basin boundaries (bot-

tom) as a function of the initial conditiams(0). The other initial conditions arey(0) = 0, x1(0) = /1 — x3(0)2

(see Tables 1 and 2). Since the orbits circle the origin many times before being captured, the initial portion of each

trajectory has been omitted. Since once an orbit has been captured, it circles the associated slow-varying center
many times, the final portion of each captured trajectory has also been omitted.

-

around the North pole. The measure of such motions goes to zera@ass to zero (see
Figures 8 and 9).

10. Conclusions

From Tables 1 and 2 we see that the asymptotic theory agrees excellently with direct numerical
integration of the original differential equations of motion. From Table 1, it can be seen that
for the five entries, the total bandwith is821034— 0.805437~ 0.0156, so the maximum
error of about 0.0004 is about 2.5% fo= 0.001. The comparable calculation foe= 0.0001
is, from Table 2, about one-tenth as much. This excellent agreement should not be unexpected
since the asymptotics constitute a second order theory. This is true in spite of the fact that only
the lowest order terms are maintained! The explanation for this is that because of symmetry,
the second order terms vanish, making what would normally be a first order theory valid to
second order. To see this, compare Equations (45) and (46) with Equations (59) and (60).
The symmetry requirement is met by the dual-spin spacecraft equations, but, in addition, it is
required that the symmetric initial conditions(0) = 0 be invoked.

The theoretical results for the probabilities of capture given in Equations (77-79) agree
quite well with the numerical computations. Using a representative value-00.05, Equa-
tions (110-112) giveD; = D4 = 14.82 andD, = D3 = —12.60 from which we obtain the
theoretical probabilities of capture(l) = 85.0%, RL) = P(R) = 7.5%. The numerical
computation for the probabilities of capture are obtained by computing ratios of the changes
in the initial values oft3(0) in the last five entries in Tables 1 and 2. There are four bands, two
Ms, one L and one R. Fer= 0.001 we obtain BV) = 90.4%, RL) = 5.3%, RR) = 4.3%,
whereas fore = 0.0001 we obtain M) = 84.1%, RL) = 8.0%, RR) = 7.9%. Note that
the agreement with theory is better for the smaller value. &flso note that these probability
computations assume that the initial conditions lie in the region of phase space filled by the
alternating bands which encircle the L, M and R capture regions, cf. Figure 8.

Although the asymptotic method presented in this paper improves our understanding of the
dynamics of resonant capture, we were not able to express our final results in analytic form.
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Figure 8. Regions of attraction as obtained by numerical integration of Equations (1-4). Parametets@a95,

ip = —0.3,i3 = —0.7, ug = 0.25. Letters represent capture regions=lLeft, R= Right, M = Middle (South

pole), N= North pole. In order to better see the continuity of the regions, the unit sphere (7) has been punctured at
the North and South poles, then opened up into a cylinder, and finally unrolled. The verticabgxigagng from

—1to 1. The horizontal axis is arcté»/x3) going from—3r/2 tox /2. E.g., a point lying in a region marked L
means that a motion with the corresponding initial condition is captured into the left capture region. Motions in
region N, while being attracted to one of the regions L, M or R, have not had enough time to be captured in the
time intervalug/e, before the motor is turned off at = 0.

)1(2 0)

i N
~—

o

Figure 9. Basins of attraction in initial condition space. The data of Figure 8 is here displayed as a projection
of the bottom half of the sphere (7) from infinity onto thg(0) — x2(0) plane. Initial conditions in the white,

black and dotted regions are attracted respectively to capture regions M,L and R. Results obtained by numerical
integration of Equations (1-4). Parametersiare —0.3, i3 = —0.7, ¢ = 0.005, g = 0.25.
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In general, there are two barriers to obtaining closed form expressions for the critical initial
conditions leading to the basin boundaries. Firstly, the integrals occurring in the averaged
equations, namely Equation (61) fere, T) and Equation (64) foD(e, T), as well as the
Melnikov integrals, Equation (67) for the quantiti®s, need to be evaluated. We were able

to do this in closed form using elliptic integrals. Secondly, the resulting averaged equations,
Equations (59) and (60), need to be integrated to obtain the time of separatrix cr@ssing,
and associated phage. We were not able to do this in closed form, and used numerical
integration instead.

Previous studies of this problem [11, 13, 26] have noted the key difficulty of dealing with
the crossing of the slowly moving separatrices. The present work offers a solution to these
difficulties by supplementing the averaged equations with energy changes represented by
Melnikov integrals in the neighborhood of the slowly moving separatrices. This results in
a clear understanding of how the question of capture is influenced by the @shasdéch a
motion has when it reaches the instantaneous separatrix.
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Appendix A: Change of Variables

Various expressions in this appendix are well known change of variables formulas from
(g, p,T) to (H,y, T). Since H= H(g, p, T), by taking partial derivatives with respect to
H, ¥, T, we obtain

1=H,qn +H,pH, (113)
0=Hyqy +H,py. (114)
0 = HqC]T + HpPT + HT. (115)

There are similar expressions following fratn= (¢, p, T):

0= 1/fq‘IH + 1/fppH’ (116)
1="Y49y + ¥ppy, (117)
0=1vYyqr +V¥ppr +vr. (118)

Since H=H(q, p, T),

dH dg dp
. _HZLiH X
dr th+ P

Using Equations (10), (11), (17), (18), and (114), this becomes Equation (19):

+ eHy. (119)

dH
e e(g1H, + g2H, + Hr). (120)
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A similar expression for ¢ /dr using Equation (117) yields Equation (20):

d
d—if =oH,T) +e(g1¥y + &V, + ¥r). (121)

Although Equations (120) and (121) will be satisfactory for our purposes, they are somewhat
incomplete from a theoretical and practical point of view since we wish to express our func-
tions as functions of H angr, where we assume we have been successful in determjning
and p as functions of H andr. We write a few additional formulas (which we do not use

in this paper and are particularly well known for Hamiltonian systems) in order to express
Equations (120) and (121) as functions of H ahdThe Jacobian of the transformation can

be determined using Equations (17), (18), (12), (13) and (113):

Gy PH — PyqH = Jipu = fogu = Z(HpPH + Hyqn) = r (122)
w w w

Individual partial derivatives can now be determined from Equations (113-115):

w w w
H, = %, H, = N T —(Hyqr +H,pr) = ;(PWIT —qypr), (123)
and from Equations (115) and (116):
w w w
vy = —% s Yy = % o Y1 =—Weqr +¥ppr) = " (=pHqr + qupr). (124)

Since H is known explicitly but) is not, these may be treated differently. These expressions
are similar to those derived in [2, 8].

Appendix B: Near-ldentity Transformation for Averaging

In this appendix we derive Equations (42) and (43). Using the chain rule on Equations (38)
and (39),

d[H dfle e?Hy, + - -
— =l Al — T 125
dt[w} [ 4e ]dt[¢}+[82wlr+___], (125)
where
2 DY 2 DY
_ 8H1€+82H2€+ 8H1¢+82H2¢+ . (126)
ey, + %Yo, + -0 e, + Yo, £
Solving for d/(dr) [;] we obtain
d e _1 d[H 82H1 + ..
— =TI A — - T . 127
Lo -reerig V][ ) @2
The near identity matrix is easily inverted, f sA]™* = | —eA+?A%—. .., and the standard

form is used to evaluate/¢dr) :; ]:

dle]l_q_ 272 ef (H, v, T) _ o[Hy, s
dt[¢]_[l EA“A][CU(H,THeg(H,w,T)} 8[w1,]+0(8)' (128)
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For our purposes, we already have sufficient information from Equation (128) concerning the
angle¢, namely

do 2
i oM, T)+egH Y, T) —ew(H, T)Yy, + O(£). (129)
Shortly, we will be more precise concerning Equation (129) since Hyamde on the right-
hand side of Equation (129). We have to work harder to obtain the accurate information we
need concerning. The leading-order part af?A? follows from Equation (126), but we will
actually only need one entry of the following:

%A% = ¢? [ HL +Hyvs  Hi(Hy +v)
Y, (Hy, +9,)  Ha ¥, + 1//12¢
Thus, from Equation (128) we obtain
de

o = S H Y. 1) —ea(H DH,, — ?w(H, T)Hp, — e f(H, ¥, T)Hy,

] L 0@, (130)

— &2g(H, ¥, T)Hy, + 20 (H, T)Hy, (Hy, + ¥1,) — e®Hy, + O(3). (131)

We use the near identity transformation (40) and (41) to relate the old variables to the new
ones, so that using Taylor series we obtain

owH, T) =wle, T) + cw.(e, T)Hi(e, ¢, T) + O(?), (132)

f(H’ W, T) :f(e’¢’T)+8(feHl+f¢w1)+0(82)5 (133)

where all expressions are now in terms of the new variabbesd¢. A similar expression for
g exists. When Equations (132) and 133) are substituted into Equations (129) and (131), we
obtain Equations (42) and (43).
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