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Abstract

In this paper we consider the effects of nonlinearities due to Coriolis and centripetal forces
on the motion of a multi-degree-of-freedom high-speed flexible-arm robot. We perform
experimental investigations on a robot arm as well as analytical investigations on a
mathematical model of the experimental apparatus. The two-variable expansion-
perturbation method is used to describe the motions at internal and forced resonances.
The perturbation solutions show the existence of a jump phenomenon and ‘saturation’
when both forced resonance as well as when 2:1 internal resonance occur. This
phenomenon is also observed in the experiments, thus proving the accuracy of the
perturbation solution.

Introduction

Multi-degree-of-freedom nonlinear systems have been the subject of numerous
recent investigations (for example (Storti and Rand, 1982; Keith and Rand, 1984;
Chatraborty and Rand, 1989; Golnaraghi, 1988)). Robotic mechanisms are a
direct application of these studies. The complicated nature of these systems has
produced limited progress in their design and control. Robotic devices are usually
modelled by many coupled, nonlinear differential equations which are impossible
to solve exactly. Understanding the nonlinear behaviour of these equations would
contribute to the fabrication of a new generation of robots which are lightweight,
highly mobile, and capable of carrying heavy payloads. Clearly, these characteris-
tics would imply larger amplitudes of oscillation of the robot arm due to the
effects of arm rotation and arm flexibility.

The kinematic nonlinear forces can, in general, be categorized as quadratic
nonlinearities, and their appearance in n-degree-of-freedom systems can cause
strong coupling between the various modes. For example, for a two-degree-of-
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170 M. F. GOLNARAGHI ET AL.

freedom system, the equations of motion take the form

¥+ @ixy = —y%, + 28,5, + F, cos (Rt + rl),} )

fz + w%xZ = —sz.z +221’ + B cos (ta + 1'2),

where 2%,%, and %7 are Coriolis and centripetal nonlinearities, respectively.

If the natural frequencies for an n-degree-of-freedom system are denoted by
w,, Wy, ..., @W,, an ‘internal resonance’ will occur when L%, g;0w; = 0, where the
a; are positive or negative integers including zero; that is a; € Z. Moreover, if a
periodic excitation with frequency Q acts on a multi-degree-of-freedom nonlinear
system, then resonances will occur when pQ = Y., b,w;, where p, b; e Z.

In the case of two-degree-of-freedom systems, forced and internal resonances
have been studied recently by Stupnicka (1969, 1978, 1980). Studies by Van
Dooren (1971, 1972, 1973) reveal that combination tones could exist in
two-degree-of-freedom systems containing two input frequencies Q; and Q,. The
resonances in these studies were of the form w, = Q, + Q,, with w, as one of the
natural frequencies. For a two-degree-of-freedom system having quadratic
nonlinearities in which w,=2w,, the amplitude of the mode being directly
excited would have an upper bound when Q = w,. This phenomenon is called
‘saturation’ which is unique to systems with quadratic nonlinearities and has been
studied by Nayfeh and Mook (1979) and Haddow et al. (1984).

In this paper we perform an analytical and experimental investigation of the
dynamics of a high-speed two-degree-of-freedom flexible-arm robotic device,
shown in Fig. 1. The arm is subjected to translational and rotational periodic
inputs. Because of the complexity of the actual system, a simple mathematical
model is developed to ease the theoretical and numerical studies. The
second-order, nonlinear, coupled, ordinary differential equations possess quad-
ratic nonlinearities. The equations of motion are non-dimensionalized and scaled.
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Fig. 1. Experimental apparatus showing a two-degree-of-freedom flexible-arm robot
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The two-variable expansion-perturbation method is used in analysing the stability
of the system for resonant and non-resonant cases. Consequently, all the possible
resonances to the first order of approximation are located, and a study of the case
of forced resonances is presented. Comparison of the experimental results with
the perturbation solution indicates that the two-variable expansion method
provides a good approximation of the motion of the system when the amplitudes
of oscillation are sufficiently small.

Description of the mathematical model

The robotic mechanism shown in Fig. 1 consists of an oscillating base and a
flexible arm which has a translational motion. The gripper and the mass of the
payload are simply replaced by a single mass M. This system can be modelled as a
simple sliding-pendulum mechanism as shown in Fig. 2. The (X,, Y, Z,)-
reference frame is stationary and is centred at the point P. The (x,, y;, z,)-
coordinate set at the point P is rotating relative to the base. Mass M, represents
the mass of the d.c. motor magnet assembly. Mass M, is the mass of the body
transported by the arm, as well as the effective mass of the flexible arm r,. The
flexibility of the arm is taken into account by using a torsional spring with spring

Y
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Fig. 2. A simple dynamical model representing the flexible-arm device
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stiffness K,. The stiffness of the springs used to mechanically centre the position
of mass M, is represented by K;, and C, and C, are the translational and
rotational damping coefficients of the system, respectively.

Derivation of the equations of motion

The equations of motion of the mechanism shown in Fig. 2 were obtained by
using Lagrangian dynamics. These equations were derived analytically both by
hand and by use of the symbolic manipulation system MACsYMA, using a computer
program which generates the dynamical equations of robotic mechanisms,
developed by Golnaraghi et al. (1985).
For the model developed for the two-degree-of-freedom robotic device, the
kinematics are easily derived using vector algebra. Considering Fig. 2 we define
T, =1y, r,=n+r )

as the vectors describing the positions of masses M; and M,. Thus, the velocities
of M, and M, are

it enis, APV
o, = (7 — (60, + 8,) sin (6,))i + (16, + r2(6, + 6,) cos (6.))].

where i, ] and £ are the unit vectors of the (X, Y, Z )-coordinate frame. Hence,
the kinetic energy of the system can then be written as

KE = %mli‘ml : i'ml + %mZi-mz : i'mz
=3m (73 + r36%) + dmy(7} + r103 + r3(6, + 6,)°
+27r(— (6, + 6,) sin (6,)) + 2rr;((6,6, + 63) cos (6,))). 4)

The potential energy of the system simply involves that of the springs K, and K,
and can be expressed as

PE = 1K r} + 1K, 03. (5)
Lagrange’s equations of motion of the system are
(my + my)i, + Ci#y + Kyry — myry(6, sin (8,) + 83 cos (6,)) )
— m,ry(0,(t) sin (8,) + 0%(t) cos (8,) + 26,(t)H, cos (6,))
—(my + mr, 63(r) = F(1), >

myr36, + C,0, + K,8, — m,r,r, sin (6,) ©)
+myrn(6,(f) cos (8,) + 03(¢) sin (8,)) + 2m,r,0,(t)F, cos (65)
= —m,r30,(t), J
where
E(t) = A cos (Q,1), 6, = F sin (Qpt). @)

Note that 6, and r, are generalized coordinates (dependent variables) while 6,
and r, are given.
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At this point it should be mentioned that the nonlinear terms in (6),, are
due to the effect of rotation on the geometry of the structure. Note that the
unforced equations of motion have a stable equilibrium position at (r, =0,
/=0, 6,=0,.8,=0). In the approximate solution which follows we shall replace
the nonlinear trigonometric terms in (6), , by truncated Taylor expansions about
this equilibrium.

Non-dimensional and scaled equations of motion

In order to generalize the problem, the equations of motion (6);, are non-
dimensionalized. The non-dimensional equations take the form

pr+ v1P1 + ©1p; — m(8,sin (6;) + 65 cos (6,))
— m(6,sin (8,) + 28,8, cos (8,) + 63 cos (8,)) — p,6?
= fiw? cos (Q,7), 8)
0>+ 720, + 036, — pysin (6,)
+ p1(0, cos (8,) + H%sin (8,)) + 20,p, cos (6,) = — b,
where dots represent differentiation with respect to the non-dimensional time 7,
defined as
T=Q1. )

In (9), Q is the non-dimensionalizing frequency. The non-dimensional variables
are p, and 6,, with

p1=n/r. (10)
The non-dimensional mass is defined as
m=—>22_ (11)
m,+m,

The natural frequencies of the uncoupled, unforced linear system are

)/ (o) /
= Q, = Q. 12
(O <m1 +m, (2] mzr% ( )
The non-dimensional damping parameters are defined as
=——/Q, = Q. 1
Y1 "+ m, Y2 " (13)
The forcing frequencies in (8) are
Q,=Q,/Q, Q,=Q,/Q. (14)

Having non-dimensionalized the differential equations, we now proceed to
scale them. This process inserts a small dimensionless parameter ¢ in the
equations, £ <1, which represents the order of nonlinearities and coupling. This
step will be important for our perturbation solution. We shall choose £ so that we
perturb off the linear equations for small e. To begin with, we posit a change of
variables such that

6,=¢6, p,=¢p, O,=fp, F=¢, (15)
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with n, j and k integers greater than or equal to one, the values of which are to be
determined. Then we substitute equations (15),, into (8),, and expand the
resulting equations using Taylor series for small . In particular, sin (¢6) and
cos (£6) are replaced by €60 + ... and 1 — ... , respectively. This leads to

"D+ v1"p + wle"p — me?08 — me? 6 — met ' 0
—2me*' 98 — e ¥pp? — me¥§? = ef,w? cos (R, 7), 16)
€0+ 7,0 + w20 — "' PO + "V pp + " pP?0 + 2" p
=—g.

At this point we require the linear terms to be of at least one order £ lower than
the nonlinear terms. In equation (16),, comparing £"p, me*06 and me™*'0¢p
terms, we require the linear terms p and p to be of lower order than the
nonlinear terms 66 and ¢. This gives

n<2, n<j+1. 17)

Similarly, for the forcing term to be of higher order than the linear terms, we
must have

k=n. (18)

Likewise, the nonlinear, parametric and forcing terms in (16), must have higher
order than the linear terms. This gives the following relations:

j=1,  n+1>1, (19a)
or

n>0. (19b)

Equation (17), requires that n=1 and (17), is satisfied by j=1. Then (18)
becomes

k=1. (20)

The choice of k determines the magnitude of the translational excitation
amplitude.

In order to purturb off from the undamped linear equations, we choose to scale
the damping coefficients y; and y, as

Vi=El,  Y2= Ela. 21)
With these assumptioﬁs, the equations of motion take the following form:
P+ epp + wip — me(00 + 6%) — me(0p +20¢) — £2p§?
=me@* + e 'fw? cos (Q,7), (22)
0+ 0 + w30 — £p0 + £(pP +2pP) = — &,
where

@ = E sin (Q,7). (23)
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The two-variable expansion-pertrubation method

When flexibility is introduced in the robot arm, study of the resonances becomes
crucial. This is particularly important when the robot is required to perform the
same task for various payloads of different sizes and weights, causing the natural
frequencies of the system to vary for each payload. For example, if the payload is
such that w, = 2w, (for a two-degree-of-freedom system), then internal resonance
must be considered. Moreover, we expect the usual case of forced resonance to
occur at Q; = w;. In such resonant cases, the response of the system becomes
complicated and the robotic device may not perform the desired task. The goal of
our perturbation analysis is to help us understand the dynamics of the system near
internal or forced resonances in order to improve the design of the robotic device.

Using the two-variable expansion-perturbation method (Kevorkian and Cole,
1968; Nayfeh, 1973; Keith, 1983; Rand, 1985; Rand et al., 1987), we replace the
independent variable 7 by two new variables, & and 7, such that

E=1, n=e€T; (24)

where & is just T and 7 is a slow time variable. The idea of the method is to
permit the dependent variables p and 6 to depend explicitly on two time scales,
& and 7. For example, periodic steady-state behaviour will occur in &, while
approach to steady state will occur in 7.

Using the chain rule, we can rewrite the time derivatives of r(&, n) and 8(&, 1)
as

d 3 3 d? & &
—=a—+e—, —S=a’—5+2 + O(&%).
e aag Ean il 38 ae aEan O(&%) (25)
We also expand p and @ as
p = po+ £p;, + O(€?), 0= 6,+ €60, + O(&?). (26)

At this stage we are ready to analyse the equations of motion.

The forced resonance Q,=w,

Perturbation study of the forced system is of particular interest since, in practice,
robotic devices must follow periodic tasks with a combination of forcing
frequencies. For a two-degree-of-freedom mechanism, with Q, and Q, as the
driving frequencies, a periodic task is defined by Q, = pQ, for some integer p.

Forced resonances include Q; = w,, Q,= w,, Q,=w, + 0,, Q, = w, — w, and
Q,=3w,. In this paper we shall consider only Q, = w,. See (Golnaraghi, 1988)
for analysis of other resonances. In the study of such resonances, we must
distinguish between the case of internal resonance w,=2w, and the case of no
internal resonance (that is, w, is away from 2w,). For the internal-resonance
case, we detune the resonance with the parameter o, such that

Ql = Wy + E0,. (27)

Let us now consider the case where Q, = w,. We choose k =1 in (15) so that
F = ¢f. For consistency of notation, we write F, =f;.
Substituting (24) to (26) into (22) and collecting terms, we find the zeroth- and



176 M. F. GOLNARAGHI ET AL.
first-order equations to be as follows. For order €%
Pogs + 03P =0, Boss + 030, = Q3f, sin (Q,8); (28)
for order ¢:
Pige + 011 = —2Pog, + mBoBogz + m(0os)’ — pipoe
+2Q, fmB; cos (Q,E) — Q3f,m8, sin (Q,E)
+ Q3 fim cos’ (Q,§) + fw] cos (,8),
015 + w36, = =260z — P200s — 292, f00 cOs (2,8) + Q3 fopo sin (Q,8).

Here the subscripts represent partial derivatives. The solutions of (28), , can be
written in the form

(29)

po = Ki(n) sin (@,&) + Kx(n) cos (w,§), } (30)
6o = K3(n) sin (w,§) + K5(n) cos (w,§) + Q; sin (Q,£),
where
__
0= —w% mrers (31)

We now substitute (30),, into equations (29), suppressing the secular terms
sin (w,&) and cos (w,&) in (29),, and sin (w,&) and cos (w,&) in (29),. Note that
we have written

cos (,8) = cos (w; + £0,E) = cos (w0, & + na,)
= cos (w,) cos (o,7) — sin (w;&) sin (o,7n). (32)

Due to the length of the expressions, we shall eliminate some of the intermediate
steps. We shall consider two cases; namely, the non-resonant case when w, is
away from 2w,, and the internal-resonant case when w; =2w,. In this work, the
significance of resonance is the appearance of additional secular terms in the
two-variable expansion method.

The non-resonant case

Before writing the solvability conditions, we introduce a polar transformation
such that

K,=a;sin(@,), K,=a,cos(¢,), Ki=a,sin(¢;), K,;=a,cos (¢2), (33)

where a, and ¢, are real functions of 7. This enables us to obtain the
secular-term equations in a more convenient form, namely

u o, )
ay, = _51“1 +f171 sin (),

ary = —%zaZ’ f (34)

Y, =0y +f1— cos (),
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where
Yy=0om+ ¢, @, = constant.

The equilibrium solution is obtained when each right-hand side in (34) is set
equal to zero. So we will have

a.= fio,
" 2(0% + pud/a)
a,= 0, (36)
-1 M
=tan"!-—.
P =tan 20,

Stability analysis of (36), performed by linearizing equations (34) around the
equilibriuin values, shows that the the equilibrium solution is stable. Thus, the
steady-state solutions for p and @ (that is, as T—> ) are

Fwe™!
=== Q7 ,
P 2((’%_*_N%/‘t)icos( 1T — )+ O(e)
EQ; @7
6= 0 sin (82,7) + O(¢).

Therefore, the O(¢) solution of the system is just that of the linear system.

The case of internal resonance (0, =2w,)

This is the case when w, is very close to 2w,. We introduce a detuning parameter
0, to show the nearness of the two frequencies. Hence,

0, = 2w, + £0,. (38)

As in the previous case, we switch to polar form using (33). Furthermore, in
addition to (32) we write

cos (w1 8) = cos (2w,§ + €0,8) = cos Qw,& + noy)
= cos (2w, &) cos (0,7) — sin 2w, &) sin (0,7),

39
sin (w,§) = sin Qw,§ + £0,8) = sin 2w,& + noy) (%9
= cos (2w, &) sin (o,1) + sin (2w,§) cos (a,1),
Thus, the non-autonomous solvability equations, in polar form, are
2
10 =" g2 sin () + 1% 5in () - 2, |
2 2 2
o : H
azg = "o, a,a;, sin (y,) 5 % |
(40)
mw’ fiw,
Buo = =50 - ahcos () +7 " cos (),
2
@
P = _t a, cos (Y1),

2 P
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where
Yi=n0o+ @y, Y2=1n0,+20,— @. (41)

Eliminating @, and ¢, from equations (40), we obtain the following set of
equations:

mw} , . W

ay, = 2w12 a3 sin (y,) +fl— sin (y,) — =

i . B
az" = —4—0)2 a,a, sin (wz) - ? a, (42)

>
Yin=— mew; a3 cos () +@C05 (y1) + oy,
1 2a 0, a,

w? 3 ho

Yo = T2, a; cos (Yy,) + 7.0 az cos (y,) — 2_ cos (Y1) + 0.

There are two possibilities for the equilibrium solutions, a;, = y;, =0, to (42).
The first case is

_ _ fiw,
@0 a= 2ot + ui/4t’
u (43)
¥, =—tan! 2711 , Y, = arbitrary,

which implies that the O(e) solution is essentially that of the linear system, as
follows:

Fw.e™!

T 2(2 + 3ud)

Q2
2 5 sin (Q,7) + O(¢).
- Q; J

cos (2,7 — y,) + O(¢), ]
> (44)

The second case is

2w A
a,= 22 ((01+ 0,)* + pd),

_1 [Fl:t(flwl 2)5]
a = >
w2 ma:1 3 2.3 b (45)
t2a505 + 3y aiws
mwgag(al + 0,) — wioia}’

¥, =tan!

M2
o+ 02,

Y, = —tan™!

where

[y = (40:(0, + 03) = 2p4,) @5, = Qui(o1 + 03) + dupr)w,.  (46)
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Hence, the steady state response for this case, with the use of equations (45), is

2w . |
P =722 ((01 + 02)2 + M%)i cos (QIT _ wl) + O(S),
1
EQ;
0= —wg — sin (€2,7) [ )
1 [T, :L'(Ffe_‘w?—rg)%]i )
w, [ mo, cos (2(R:7 — y2 — 1)) + O(e). ‘

Comparing the two possible solutions, (44) and (47), we can see that when
internal resonance exists, the solution to 8 has an extra term beyond that of the
non-resonant solution. This implies that € will be excited by half the frequency of
translation €, in addition to the rotational forcing frequency Q,. From the
solution to p, we see two major differences with respect to the non-resonant
solution. First, the amplitude of the p mode is independent of the forcing
amplitude f; (that is, saturation phenomenon). Secondly, the approximate
solution for @ has an additional term at resonance.

In order to illustrate the system behaviour at resonance, we numerically
integrate the governing equations for 4; and v, (42) and compare the results with
the solution of (43) and (45) which are the equations defining the steady-state
values of the response amplitudes. For simplicity, in all cases we define Q, = Q,.

Figure 3 illustrates the amplitudes of response as functions of the forcing
amplitude f;. In this case, 0,=0 or v, =2w, and 0, =0 or Q, = Q, = w,. As we
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Fig. 3. Amplitudes of response versus the forcing amplitude f;, showing perturbation
solutions when 0,=0, 0,=0, and Q,=Q,
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can see, there exists a critical value for f;, obtained from (45):

2uq4,
o

fhi=f= w>, (48)
where for f; <f. the response is defined by equations (44), and for f, >f. the
response follows (47). It should be noted that the solid lines in Fig. 3 define the
stable solutions and the dotted lines define the unstable solutions. Stability
analysis of the equilibrium solution was performed by linearizing equations (42)
around the equilibrium values of a;, a5, ¥; and v,, and obtaining the eigenvalues.
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Fig. 6. Phase portrait and frequency spectra of the motion at Q,/x =5.57 Hz, prior to
resonance



182 M. F. GOLNARAGHI ET AL.

In contrast to Fig. 3 which involves parameters precisely at the resonance, we
now consider detuning parameters (chosen to agree with experimental measure-
ments). Figure 4 describes the amplitudes of response as the forcing amplitude
fi varies for the perturbation solution. In this case, o,= —0.87, 0,=3.0 and
Q,=Q,. Here the jump occurs at two critical values of f;. These values are
defined by (45) as

L fiefe=

w3

r2+r13
o

fimfa= , (49)

where at f,; <f, <f., a, has one unstable and two stable solutions, and a, has two
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Fig. 7. Phase portrait and frequency spectra of the motion at Q,/nx =7.16 Hz, during
resonance
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stable possible states. The values of a, and 4, in this region depend upon the
choice of the initial conditions.

Frequency response curves when o, =—2.0, f; =10.0 and Q, = Q, = 0, + €0,
are shown in Fig. 5. In this case, o, corresponds to the detuning of the forcing
frequency, so that when o,=0, the frequencies are related by Q,=Q, = w,.
Again, the jump and the stable and unstable solutions of the system are observed.
The jump, however, occurs only in one side of the resonance curve, and that is
due to the fact that o, # 0; hence, the resonance curve is unsymmetric.

Figure 6 illustrates the phase portrait and the frequency spectra of the motion
at Q,/x=5.57THz prior to resonance. Clearly, the response is following the
driver. However, at Q, =7.16 Hz, the system is in resonance and exhibits a
subharmonic response. The frequencies of this response are clearly shown in the
frequency spectra of p and 8, shown in Fig. 7.

Experimental investigation of the forced resonance Q, = o,

In this section we consider the experimental study of the two-degree-of-freedom
robotic mechanism, shown in Fig. 1. The flexible-arm robotic manipulator
apparatus is shown in Fig. 8. The stainless steel arm had the dimensions
0.4 x2.54 X 0.26 cm. The gripper and the mass of payload were replaced by a
single mass M, which was adjustable and varied from 0.5 to 1.4 kg. The bending
deflection of the arm was measured through two strain gauges at the base of the
beam. Constrained layer damping was provided through the application of
3M-SJ-2052X scotch damp (trade name) to the arm. The translational d.c. motor
magnet assembly was represented by mass M, which travelled on a 30cm
guideway. The guideway consisted of two parallel stainless steel rods. Springs K,
were used to mechanically centre the position of M,. An LVDT sensor
determined the position of M, in volts, with zero volts showing the equilibrium
position at the centre of the guideway. The translational input was sinusoidal
and was provided by an HP 3300A function generator (trade name) and a Crown
300A Series II amplifier (trade name). A four bar linkage driving mechanism at
the base converted the unidirectional rotation of a d.c. motor to oscillatory
motion.

Both rotational and translational output signals, r, and 8,, were amplified and
filtered, for noise reduction, at 100 Hz using low-pass filters. These signals were
observed and stored on a Nicolet digital oscilloscope (trade name). Continuous
time traces in the phase planes (r,, 6,), (r;, #,), and (6,, 92) were recorded.
Frequency spectra provided more accurate readings and resulted in a clearer
understanding of system characteristics. Frequency power spectra of the position
signals were obtained using HP 3562A Dynamic Signal Analyzer (trade name).

Existence of a jump phenomenon

As discussed earlier, the system with which we are concerned possesses quadratic
nonlinearities arising from the kinematic terms such as inertia, Coriolis and
centripetal accelerations. Furthermore, we found analytically that for our
two-degree-of-freedom system possessing quadratic nonlinearities, interesting
phenomena were predicted to occur when the natural frequencies were 2:1, such
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Fig. 8. Experimental set-up of the two-degree-of-freedom manipulator

Table 1. The system bparameter values

KiN/m) Ko (N-m) My (ke) My (kg) o) (™) wsn ) w2

m.s

3439.0 105.0 0.7 1.4 45.0 0.055 6.6 3.45
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Fig. 9. Frequency response showing the primary resonance and the existence of a jump
phenomenon

that o, =2w,. Moreover, we predicted that the case of forced resonance, when
the frequency of excitation &2, was near the natural frequency w,, was particularly
interesting.

In this section we choose the dimensions, weights and other parameters of the
system as shown in Table 1, to induce a 2:1 relationship between the natural
frequencies (that is, internal resonance w,=2w,). In addition, we have con-
strained the forcing frequency 2, to vary in the neighbourhoods of ,, in order to
investigate the behaviour at the primary resonance. For constant forcing
amplitudes F, and F,, the frequency response of the system was obtained by
incremental increase of Q, = Qg with initial value Q,/7 = 5.5 Hz, as shown in Fig.
9. The r, and 6, samples taken while Q, increased were marked O, A and those
collected when Q, decreased were marked X, +. The diagram illustrates the
steady-state responses and a jump phenomenon at Q,/m =7.3 Hz. The jump
implies that the response is multivalued, and occurs only in one side of the curve
and is not symmetric. In this case the natural frequencies were w,/x = 6.6 and
wg/m=3.45Hz (that is, w,=2we + £0) and consequently the results lack
symmetry. We observed the same phenomenon when Q, was fixed and the
forcing amplitude increased. Figure 10 illustrates the case where Q,/w = 6.8 Hz
and the forcing amplitude F, varied from 0 to 5.0 volts.

The phase plot (0,, ) and the frequency spectra for 6, and r, when
Q,/n =6.8 Hz, are shown in Fig. 11. A figure-eight in the (0,, ;) phase plane
represents the 2:1 ratio between the principle frequencies of r; and 6,. As we
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Fig. 10. Amplitude response showing the existence of a jump phenomenon when the
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can see, at resonance both signals go through a subharmonic resonance, and the
subharmonic frequency locks to exactly one-half of the forcing frequency.

Conclusions

In this paper we have performed analytical, numerical, and experimental
investigation of the dynamics of a high-speed two-degree-of-freedom flexible-arm
robotic device. Using a simple mathematical model, we studied the motion at

1500
1000
W T O,
+
0-— T T T Y T
—1500 —1000 -500 0 500 1000 1500

.02

Fig. 11. The phase plots and the frequency power spectra of r, and 6, when
Q. /n=f=68Hz
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resonance. We located all the possible resonances to the first order of approxima-
tion, and studied a case of forced resonance, that is, Q; = w,. Furthermore, we
distinguished between the case of internal resonance, ®,;=2w,, and the
non-resonant case (that is, w; is away from 2w,). Our studies showed that the
solution for the non-resonant case was essentially that of the linear equation;
whereas, at internal resonance interesting phenomena such as ‘saturation’ and
‘jump’ occur in the motion of the system. Finally, comparison of the perturbation
and the numerical solutions with experimental results suggest that the mathemati-
cal model qualitatively predicts the motion of the physical system.
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