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Abstract

This work concerns the dynamics of nonlinear systems that are subjected to delayed
self-feedback. Perturbation methods applied to such systems give rise to slow flows which
characteristically contain delayed variables. We consider two approaches to analyzing Hopf
bifurcations in such slow flows. In one approach, which we refer to as approach I, we
follow many researchers in replacing the delayed variables in the slow flow with non-delayed
variables, thereby reducing the DDE slow flow to an ODE. In a second approach, which we
refer to as approach II, we keep the delayed variables in the slow flow. By comparing these
two approaches we are able to assess the accuracy of making the simplifying assumption
which replaces the DDE slow flow by an ODE. We apply this comparison to two examples,
Duffing and van der Pol equations with self-feedback.
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1. INTRODUCTION

It is known that ordinary differential equations (ODEs) are used as models to better un-
derstand phenomenon occurring in biology, physics and engineering. Although these models
present a good approximation of the observed phenomenon, in many cases they fail to cap-
ture the rich dynamics observed in natural or technological systems. Another approach
which has gained interest in modeling systems is the inclusion of time delay terms in the
differential equations resulting in delay-differential equations (DDEs). DDE’s have found
application in many systems, including rotating machine tool vibrations [14], gene copying
dynamics [15], laser dynamics [10] and many other examples.

Despite their simple appearance, delay-differential equations (DDEs) have several fea-
tures that make their analysis a challenging task. For example, when investigating a delay-
differential equation (DDE) by use of a perturbation method, one is often confronted with
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a slow flow which contains delay terms. It is usually argued that since the parameter of
perturbation, call it ε, is small, ε << 1, the delay terms which appear in the slow flow may
be replaced by the same term without delay, see e.g. [1, 2, 3, 4, 5, 6, 10, 11]. The purpose of
the present paper is to analyze the slow flow with the delay terms left in it, and to compare
the resulting approximation with the usual one in which the delay terms have been replaced
by terms without delay.

The general class of DDEs that we are interested in is of the form

ẍ+ x = εf(x, xd) (1)

where xd = x(t− T ), where T = delay.

As an example we choose the Duffing equation with delayed self-feedback.

ẍ+ x = ε
[
−αẋ− γx3 + k xd

]
(2)

The situation here is that when there is no feedback (k = 0), the Duffing equation does
not exhibit a limit cycle. However it turns out that for k > α a stable limit cycle is born in
a Hopf bifurcation for a critical value of delay T that depends on k. Further increases in T
produce another Hopf, which sees the stable limit cycle disappear.

See Figure 1 which shows a plot of the Hopfs in the k− T parameter plane, obtained by
using the DDE-BIFTOOL continuation software [7, 8, 9]. In this work we are interested in
the details of predicting the appearance of the Hopf bifurcations using approximate pertur-
bation methods.

We offer two derivations of the associated slow flow, one using the two variable expansion
perturbation method, and the other by averaging.

2. DERIVATION OF SLOW FLOW

The two variable method posits that the solution depends on two time variables, x(ξ, η),
where ξ = t and η = εt. Then we have

xd = x(t− T ) = x(ξ − T, η − εT ) (3)

Dropping terms of O(ε2), eq.(2) becomes

xξξ + 2εxξη + x = ε
[
−α xξ − γ x3 + k x(ξ − T, η − εT )

]
(4)

Expanding x in a power series in ε, x = x0 + εx1 +O(ε2), and collecting terms, we obtain

Lx0 ≡ x0ξξ + x0 = 0 (5)
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Figure 1: Numerical Hopf bifurcation curves for ε = 0.5, α = 0.05 and γ = 1 for eq.(2) obtained by using
DDE-BIFTOOL .

Lx1 ≡ −2x0ξη − α x0ξ − γ x03 + k x0(ξ − T, η − εT ) (6)

From eq.(5) we have that

x0(ξ, η) = A(η) cos ξ +B(η) sin ξ (7)

In eq.(6) we will need x0(ξ − T, η − εT ):

x0(ξ − T, η − εT ) = Ad cos(ξ − T ) +Bd sin(ξ − T ) (8)

where Ad = A(η − εT ) and Bd = B(η − εT ).
Substituting (7) and (8) into (6) and eliminating resonant terms gives the slow flow:

dA

dη
= −α A

2
+

3 γ B3

8
+
γ A2B

8
− k

2
Ad sinT − k

2
Bd cosT (9)

dB

dη
= −α B

2
− 3 γ A3

8
− γ AB2

8
− k

2
Bd sinT +

k

2
Ad cosT (10)

Transforming (9),(10) to polars with A = R cos θ, B = R sin θ, we obtain the alternate
slow flow:

dR

dη
= −α R

2
− k

2
Rd sin(θd − θ + T ) (11)

dθ

dη
= −3 γ R2

2
+
k

2

Rd

R
cos(θd − θ + T ) (12)
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where Rd = R(η − εT ) and θd = θ(η − εT ).

Note that the slow flow (11),(12) contains delay terms in Rd and θd in addition to the
usual terms R and θ. Could this phenomenon be due to some peculiarity of the two variable
expansion method? In order to show that this is not the case, we offer the following slow
flow derivation by the method of averaging.

We seek a solution to eq.(2) in the form:

x(t) = R(t) cos(t− θ(t)), ẋ(t) = −R(t) sin(t− θ(t)) (13)

As in the method of variation of parameters, this leads to the (exact) equations:

dR

dt
= −ε sin(t− θ) f (14)

dθ

dt
= − ε

R
cos(t− θ) f (15)

where f = α R sin(t− θ)− γ R3 cos3(t− θ) + kRd cos(t− T − θd),
and where Rd = R(t− T ) and θd = θ(t− T ).

Now we apply the method of averaging which dictates that we replace the right hand
sides of eqs.(14),(15) with averages taken over 2π in t, in which process R,θ,Rd and θd are
held fixed. This gives

dR

dt
= ε

(
−α R

2
− k

2
Rd sin(θd − θ + T )

)
(16)

dθ

dt
= ε

(
−3 γ R2

2
+
k

2

Rd

R
cos(θd − θ + T )

)
(17)

Note that eqs.(16),(17) agree with (11),(12) when t is replaced by η = εt.

3. ANALYSIS OF THE SLOW FLOW

A problem with the slow flow (11),(12) is that they are DDEs rather than ODEs. Since
ODEs are easier to deal with than DDEs, many authors (e.g. Wirkus [10], Morrison [11],
Atay [5]) simply replace the delay terms by terms with the same variables, but non-delayed.
It is argued that such a step is justified if the product εT is small:

Ad = A(η − εT ) ≈ A(η) +O(ε), Bd = B(η − εT ) ≈ B(η) +O(ε). (18)

In what follows, we shall refer to this as approach I. For example, if we replace Ad by A,
and Bd by B, eqs.(9),(10) become:
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dA

dη
= −α A

2
+

3 γ B3

8
+
γ A2B

8
− k

2
A sinT − k

2
B cosT (19)

dB

dη
= −α B

2
− 3 γ A3

8
− γ AB2

8
− k

2
B sinT +

k

2
A cosT (20)

These ODEs have an equilibrium point at the origin. Linearizing about the origin, we
obtain:

d

dη

[
A
B

]
=

[
−α

2
− k

2
sinT −k

2
cosT

k
2

cosT −α
2
− k

2
sinT

] [
A
B

]
(21)

For a Hopf bifurcation, we require imaginary roots of the characteristic equation, or equiva-
lently (Rand [12], Strogatz [13]) we require the trace of the matrix in eq.(21) to vanish when
the determinant> 0. This gives

Condition for a Hopf Bifurcation: k sinT = −α (22)

Since this condition is based on the bold step of replacing the delay quantities in the slow
flow by their undelayed counterparts, the question arises as to the correctness of such a
procedure and the validity of eq.(22). See Figure 2 where eq.(22) is plotted along with the
numerically-obtained conditions for a Hopf.

Figure 2: Numerical Hopf bifurcation curves (blue/solid) and analytical Hopf condition eq.(22)
(black/dashdot) for ε = 0.5, α = 0.05 and γ = 1 for eq.(2).
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Let us now return to eqs.(9),(10) and treat them as DDEs rather than as ODEs. In what
follows we shall refer to this as approach II. Again linearizing about the origin, we obtain

dA

dη
= −α A

2
− k

2
Ad sinT − k

2
Bd cosT (23)

dB

dη
= −α B

2
− k

2
Bd sinT +

k

2
Ad cosT (24)

where Ad = A(η − εT ) and Bd = B(η − εT ). We set

A = a exp(λη), B = b exp(λη), Ad = a exp(λη − ελT ), Bd = b exp(λη − ελT ) (25)

where a and b are constants. This gives[
−λ− α

2
− k

2
exp(−λεT ) sinT −k

2
exp(−λεT ) cosT

k
2

exp(−λεT ) cosT −λ− α
2
− k

2
exp(−λεT ) sinT

] [
a
b

]
=

[
0
0

]
(26)

For a nontrivial solution (a, b) we require the determinant to vanish:(
−λ− α

2
− k

2
exp(−λεT ) sinT

)2

+
k2

4
exp(−2λεT ) cos2 T = 0 (27)

We set λ = iω for a Hopf bifurcation and use Euler’s formula exp(−iωεT ) = cosωεT −
i sinωεT . Separating real and imaginary parts we obtain

4k2 cos 2εωT + 16kω sinT sin εωT + 8αk sinT cos εωT − 16ω2 + 4α2 = 0 (28)

−4k2 sin 2εωT − 8αk sinT sin εωT + 16kω sinT cos εωT + 16αω = 0 (29)

The next task is to analytically solve the two characteristic eqs.(28)-(29) for the pair
(ω,T ). To this aim we use a perturbation schema by setting

ωcr =
N∑
n=0

εn ωn = ω0 + ε ω1 + ε2 ω2 + . . . (30)

Tcr =
N∑
n=0

εn Tn = T0 + ε T1 + ε2 T2 + . . . (31)

Inserting eqs. (30)-(31) in eqs.(28)-(29), Taylor expanding the trig functions with respect
to the small parameter ε << 1, and equating terms of equal order of ε we obtain:

ωcr = ω0 =

√
k2 − α2

2
(32)

Tcr = T0
(
1± ε ω0 + ε2 ω2

0 ± ε3 ω3
0 + ε4 ω4

0 ± ε5 ω5
0 + . . .

)
(33)

6



where T0 is a solution to the equation sinT0 = −α/k, that is

T0 = 2 π + arcsin
(
−α
k

)
(34)

T0 = π − arcsin
(
−α
k

)
. (35)

(Eqs.(34)-(35) are the black/dashdot curves in Figure 2.)

Eq.(33) appears to be the front end of a geometric series. Assuming the series (33)
actually is a geometric series, we can sum it:

Tcr1 = T0
(
1 + ε ω0 + ε2 ω2

0 + ε3 ω3
0 + . . .

)
=

T0
1− ε ω0

(36)

|ε ω0| < 1

Tcr2 = T0
(
1− ε ω0 + ε2 ω2

0 − ε3 ω3
0 + . . .

)
=

T0
1 + ε ω0

(37)

Replacing T0 in eqs.(36),(37) by the derived values listed in eq. (34)-(35), we obtain the
following expressions for the critical values ωcr and Tcr for which Hopf bifurcations take
place:

Tcr1 =
2π + arcsin (−α/k)

1− ε ωcr
(38)

|ε ωcr| < 1

Tcr2 =
π − arcsin (−α/k)

1 + ε ωcr
(39)

where ωcr = ω0 =
√
k2 − α2/2. Figure 3 shows a comparison of eqs.(38),(39) with numerical

solutions of eqs.(28)-(29) for various parameters. The numerical solutions were obtained us-
ing continuation method. The excellent agreement indicates that eqs.(38),(39) are evidently
exact solutions of eqs.(28)-(29).

We now wish to compare the two approaches, namely
I : the approach where we replace Ad by A, and Bd by B in the slow flow, which gave the
condition (22), and
II : the alternate approach where the terms Ad and Bd are kept without change in the slow
flow, resulting in eqs.(38),(39).

Figure 4 shows a comparison between the analytical Hopf conditions obtained via the two
approaches and the numerical Hopf curves. The approach II plotted by red/dashed curves
gives a better result than the approach I (black/dashdot curves). Therefore in the case of
Duffing equation, treating the slow flow as a DDE gives better results than approximating
the DDE slow flow by an ODE. In order to check whether this is also the case for a different
type of nonlinearity, we consider in the next section the van der Pol equation with delayed
self-feedback.
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Figure 3: Critical delay vs. the feedback magnitude k for ε = 0.25 (left). Critical delay vs ε for k = 2
(right). Red/solid curves: eqs.(38)-(39). Blue dots: numerical roots of eqs.(28)-(29). These results are for
eq.(2) with parameter α = 0.05.

Figure 4: Numerical Hopf bifurcation curves (blue/solid) for eq.(2) for ε = 0.5, α = 0.05 and γ = 1. Also
shown are the results of approach I, the analytical Hopf condition eq.(22) (black/dashdot), and the results
of approach II, eqs.(38),(39) (red/dashed)
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4. ANOTHER EXAMPLE: VAN DER POL EQUATION

As another example we choose the van der Pol equation with delayed self-feedback. This
system has been studied previously by Atay and by Suchorsky et al.

ẍ+ x = ε
[
ẋ(1− x2) + k xd

]
(40)

In the case of van der Pol, when there is no feedback (k = 0), this system is well known
to exhibit a stable limit cycle for ε > 0. It turns out (Atay [5], Suchorsky [6] ) that as delay
T increases, for fixed k > 1, the limit cycle gets smaller and eventually disappears in a Hopf
bifurcation. Further increases in T produce another Hopf, which sees the stable limit cycle
get reborn. Figure 5 shows a plot of the Hopfs in the k − T parameter plane. As for the
case of Duffing equation we are interested in the details of predicting the appearance of the
Hopf bifurcations using approximate perturbation methods. We follow the same procedure
as for the case of Duffing equation, that is by deriving the slow flow using the two variable
expansion method, and the averaging method. However, for simplicity we omit the averaging
method analysis since we obtain the same slow flow by both methods. The obtained slow
flow in the cartesian coordinates has the following expression:

dA

dη
=
A

2
− A3

8
− AB2

8
− k

2
Ad sinT − k

2
Bd cosT (41)

dB

dη
=
B

2
− B3

8
− A2B

8
− k

2
Bd sinT +

k

2
Ad cosT (42)

where Ad = A(η − εT ) and Bd = B(η − εT ).
Replacing Ad by A, and Bd by B, eqs.(41),(42) become:

dA

dη
=
A

2
− A3

8
− AB2

8
− k

2
A sinT − k

2
B cosT (43)

dB

dη
=
B

2
− B3

8
− A2B

8
− k

2
B sinT +

k

2
A cosT (44)

Linearizing (43) and (44) about the origin and looking for the condition where Hopf bifur-
cation takes place, we find:

Condition for a Hopf Bifurcation: k sinT = 1 (45)

This condition is plotted in Figure 6 along with the numerically-obtained conditions for
a Hopf.

If we now treat eqs.(41),(42) as DDEs rather than as ODEs and linearize about the origin,
we obtain

dA

dη
=
A

2
− k

2
Ad sinT − k

2
Bd cosT (46)

dB

dη
=
B

2
− k

2
Bd sinT +

k

2
Ad cosT (47)
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Figure 5: Numerical Hopf bifurcation curves for ε = 0.1 for eq.(40) obtained by using DDE-BIFTOOL .

Figure 6: Numerical Hopf bifurcation curves (blue/solid) and approach I analytical Hopf condition eq.(45)
(black/dashdot) for ε = 0.1 for eq.(40) .
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where Ad = A(η − εT ) and Bd = B(η − εT ). We set

A = a exp(λη), B = b exp(λη), Ad = a exp(λη − ελT ), Bd = b exp(λη − ελT (48)

where a and b are constants. This gives[
−λ+ 1

2
− k

2
exp(−λεT ) sinT −k

2
exp(−λεT ) cosT

k
2

exp(−λεT ) cosT −λ+ 1
2
− k

2
exp(−λεT ) sinT

] [
a
b

]
=

[
0
0

]
(49)

For a nontrivial solution (a, b) we require the determinant to vanish:(
−λ+

1

2
− k

2
exp(−λεT ) sinT

)2

+
k2

4
exp(−2λεT ) cos2 T = 0 (50)

We set λ = iω for a Hopf bifurcation and use Euler’s formula exp(−iωεT ) = cosωεT −
i sinωεT . Separating real and imaginary parts we obtain

− k

2
cosωεT sinT − kω sinωεT sinT +

k2

4
cos 2ωεT +

1

4
− ω2 = 0 (51)

kω cosωεT sinT +
k

2
sinωεT sinT − k2

4
sin 2ωεT − ω = 0 (52)

As in the case of Duffing equation we proceed by using a perturbation schema to an-
alytically solve the two characteristic eqs. (51)-(52) for the pair (ω,T ). We set the critical
frequency and delay to be:

ωcr =
N∑
n=0

εn ωn = ω0 + ε ω1 + ε2 ω2 + . . . (53)

Tcr =
N∑
n=0

εn Tn = T0 + ε T1 + ε2 T2 + . . . (54)

where T0 is a solution to the equation sinT0 = 1/k, that is

T0 = arcsin
(

1

k

)
(55)

T0 = π − arcsin
(

1

k

)
. (56)

(Eqs.(55)-(56) are the black/dashdot curves in Figure 6.)

Inserting eqs. (53)-(54) in eqs.(51)-(52), Taylor expanding the trig functions with respect
to the small parameter ε << 1, and equating terms of equal order of ε we obtain:
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Figure 7: Comparison of numerical versus analytic results obtained by approach II for eq.(40). Critical
delay vs. the feedback magnitude k for ε = 0.5 (left). Critical delay vs ε for k = 2 (right). Red/solid curves:
eq.(58)-(59). Blue dots: numerical roots of eqs.(51)-(52).

ωcr = ω0 =

√
k2 − 1

2
(57)

Tcr1 =
arcsin (1/k)

1− ε ωcr
(58)

|ε ωcr| < 1

Tcr2 =
π − arcsin (1/k)

1 + ε ωcr
(59)

Figure 7 shows a comparison of eqs.(58),(59) with numerical solutions of eqs.(51)-(52)
for various parameters. The excellent agreement indicates that eqs.(58),(59) are evidently
exact solutions of eqs.(51)-(52).

Figure 8 shows a comparison between the numerically-obtained Hopf conditions and the
Hopf conditions obtained by following the two approaches I and II. When ε = 0.1, eq. (55)
(black/dashdot curve) gives a perfect match with the lower numerical branch (blue/solid
curve) than eq. (58) (red/dashed curve). However for the upper numerical branch, eq. (59)
gives a better approximation than eq. (56), see Figure 8. As ε is increased (ε = 0.5), eq. (55)
still gives a better approximation for the lower numerical branch than eq. (58). On the other
hand eq. (59) succeeds in tracking the upper numerical branch, see Figure 8.

5. DISCUSSION

In the two studied examples we saw that the two approaches gave different results. In
the Duffing equation, the approach II gave better results. This is expected since we did not

12



Figure 8: Numerical Hopf bifurcation curves (blue/solid) for eq.(40), for ε= 0.1 (left) and ε= 0.5 (right).
Also shown are the results of approach I, the analytical Hopf condition eq.(45) (black/dashdot), and the
results of approach II, eqs.(58)-(59) (red/dashed).

approximate Ad by A, and Bd by B, and instead analyzed the slow flow as a DDE. However
in the van der Pol example, we obtained unexpected results. From Figure 8, the upper Hopf
branch obtained by the approach II gave a better approximation of the upper numerical
Hopf curve than the one obtained from approach I, eq. (56). This could be explained by the
fact that as T is increased, the term ε T increases as well, which makes the approximation
Ad = A, and Bd = B no longer valid. By contrast, in the the approach II the increasing
of T does not affect the condition (59). But unexpectedly, the condition (58) obtained by
approach II fails to give a better result for the lower Hopf curve. This could be explained
by the singularity that takes place in the lower numerical Hopf branch where the limit cycle
disappears and the origin x = 0 changes its nature as an equilibrium. For example when
ε = 0.5 this singular behavior occurs for k ≥ 2, see Figure 8. Both the method of averaging
and the two variable expansion perturbation method are built on the assumption that the
solution at O(ε0) is a periodic solution around the origin x = 0. However for increasing ε
and k the origin no longer exhibits this behavior, and our assumption of the periodicity of
our unperturbed solution does not hold anymore. Note that eq. (55) does not contain an ε
term, thus it does not vary with increasing ε.

Figure 9 shows a numerical simulation of the van der Pol equation (40) for k = 2.1, where
the origin has changed its nature. This figure corresponds to the lower Hopf curve in Figure
8 when ε = 0.5. This unexpected failure of approach II leads us to wonder if this happens
because the system is a self-sustained one. In order to show that is not the case, we consider
a limit cycle system studied by Erneux and Grasman [16]. In their work, they looked for the
Hopf curves in a limit cycle system with delayed self-feedback:

ẍ+ x = ε
[
ẋ(1− x2) + k xd − k x

]
(60)
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We apply the same procedure, approach II, as we did for Duffing and van der Pol examples
to equation eq. (60), and we obtain the following critical frequency and time delay:

ωcr1 =

√
k2

2
− 1

4
− k

2

√
k2 − 1 (61)

ωcr2 =

√
k2

2
− 1

4
+
k

2

√
k2 − 1 (62)

Tcr1 =
π − arcsin (1/k)

1 + ε ωcr1
(63)

Tcr1 =
arcsin (1/k)

1 + ε ωcr2
(64)

Figure 10 shows a comparison between approach II, eqs. (61),(62),(63),(64), and approach
I, which again gives eqs. (55),(56), and the numerical Hopf curves obtained by use of DDE-
BIFTOOL. Figure 10 shows that approach II gives better results than approach I. However
approach I still gives a good fit for the lower Hopf curve as in the case of eq. (40).

Figure 9: Numerical integration for x as a function of time t in eq.(40) for ε = 0.5, k = 0.21 and delay
T=0.4. Note that the motion grows large and there is no limit cycle. The origin has changed its nature. See
Figure 8 and text.
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Figure 10: Numerical Hopf bifurcation curves (blue/solid) for eq.(60) for ε= 0.1 (left) and ε= 0.5 (right).
Also shown are the results of approach I, the analytical Hopf condition eq.(45) (black/dashdot), and the
results of approach II, eqs.(63)-(64) (red/dashed).

6. CONCLUSION

When a DDE with delayed self-feedack is treated using a perturbation method (such as
the two variable expansion method, multiple scales, or averaging), the resulting slow flow
typically involves delayed variables. In this work we compared the behavior of the resulting
DDE slow flow with a related ODE slow flow obtained by replacing the delayed variables in
the slow flow with non-delayed variables. We studied sample systems based on the Duffing
equation with delayed self-feedback, eq.(2), and on the van der Pol equation with delayed
self-feedback, eq.(60). In both cases we found that replacing the delayed variables in the
slow flow by non-delayed variables (approach I ) gave better results on the lower Hopf curve
than on the upper Hopf curve.

Our conclusion is therefore that the researcher is advised to perform the more lengthy
approach II analysis on the DDE slow flow in situations where values of the product εT is
relatively large, as in the upper Hopf curves in Figures 1.
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