PROBLEM SET #1

(1) There is an infinite row of lightbulbs labeled 0, 1, 2, ... Every lightbulb has a button to turn it on or off, and starts in the off position. A person presses the buttons on the even numbers; then presses the buttons on the multiples of 3; then the multiples of 4 and so on. At the end of this process, which lightbulbs remain on?

(2) Let I_1, I_2, \ldots, I_n be n intervals on the real line, such that $I_r \cap I_s \neq \emptyset$ for all $r, s \in \{1, \ldots, n\}$. Prove that ALL intervals have a point in common.

(3) Let C_1, C_2 be two disjoint circles in the plane. From the center of C_1 draw the tangent lines to C_2 and call P_1, Q_1 their intersections with C_1. In a similar manner, construct P_2, Q_2 on C_2. Show that $P_1Q_1 = P_2Q_2$.

(4) Consider a set S and a binary operation $*$ such that if $a, b \in S$ then $a*b \in S$. Suppose that $(a*b)*a = b$ for all $a, b \in S$. Prove that $a*(b*a) = b$ for all $a, b \in S$.

(5) Let m, n be two positive integers. Prove that gcd(m, n) divides lcm(m, n).

(6) (a) Each square of a 4×7 rectangle is colored black or white. Prove that for any such coloring, there is a rectangle with the same color on all 4 corner squares.

(b) Show a coloring of a 4×6 rectangle such that every sub-rectangle has corner squares of both colors.

(7) What is the largest real number x such that $a^{a^{\ldots}}$ converges to a finite real number?

(8) Given a positive integer n, let $p(n)$ be the product of the non-zero digits of n. Compute $S = p(1) + p(2) + \ldots + p(10^{10})$.

(9) Let A be a curve that winds through the interior of a sphere S of radius 1. Suppose that the endpoints of A are on the boundary of S and that the length of A is less than 2. Show that there is a hemisphere of S that does not intersect A.

(10) Prove that at any party there must be two people that have the same number of friends present (friendship is assumed to be mutual).