Solution Hints v2

1. Show that if $0 < a \leq c$ and $0 < b \leq d$ then
 \[ad + bc \leq ab + cd \]
 and use this to show that $\sum_{n=1}^{N} x_n y_n$ can be increased by rearrangement if it is not already of the form $\sum_{n=1}^{N} x'_n y'_n$.

2. Reduce the equation modulo a and modulo b. Take the resultant description of all potential integer solutions as
 \[m = kb - 1 \]
 \[n = la - 1 \]
 and plug these into the original equation quickly seeing that m and n both positive is not possible.

3. There was a typo on the exam as printed in forgetting to include the condition $\epsilon < 1$.
 The mean value theorem readily shows that $b_n = (n + 1)^{1-\epsilon} - n^{1-\epsilon}$ approaches 0 as $n \to \infty$. It also shows that the sequence $(b_k)_{k=1}^{\infty}$ is a decreasing sequence as n increases. So given any desired accuracy δ, to well approximate x, consider the telescoping series
 \[S_M = \sum_{k=n}^{M} b_k = (M + 1)^{1-\epsilon} - n^{1-\epsilon} \]
 starting with an n so that $b_n < \min(\delta, x)$. Here we have introduced S_M to denote the sum. For any $M \geq n$, the telescoping series S_M gives a number of the requested form. As $M \to \infty$, the sum S_M approaches ∞, (this is where $\epsilon < 1.$ is relevant), so eventually surpasses x. Letting M be the first index for which
S_M at least x, we see that this S_M is the requested approximation.

4. The possibilities $k = 1$ and $k = 2$ are readily ruled out. The example $x(x - 1)(x + 1)(x - 2)(x + 2)$ shows $k = 3$ suffices.

5. If $a \geq b$, the enclosing square S must have a side length x of at least $2a$ just to contain the circle of radius a.

To get an additional condition, note that the center O_A of circle A of radius a must be inside the subsquare S_A formed from square S by moving a distance a inward along each edge. (Otherwise circle A would in part be outside S.)

Similarly center O_B gives rise to a subsquare S_B.

Now if one draws a little picture and thinks about the diagonal of square S (which includes the diagonals of S_A and S_B as well), the condition of O_A being in S_A and O_B being in S_B quickly leads to the distance between O_A and O_B being bounded by the distance from one corner of S_A to the opposite corner of S_B.

Computing this distance (which is along the diagonal mentioned earlier) leads to $\sqrt{2}(x - a - b)$. On the other hand the distance from O_A to O_B has to be at least $a + b$, so we have the additional inequality

$$\sqrt{2}(x - a - b) \geq a + b$$

or

$$x \geq (a + b) \left(1 + \frac{1}{\sqrt{2}}\right).$$

It’s now clear that the minimum sidelength is

$$x = \min\left(2a, (a + b) \left(1 + \frac{1}{\sqrt{2}}\right)\right)$$

making sure that both square S_A is nonempty (so the circle centered at a corner of S_A fits) and that there is enough room along the diagonal to place the center of the circle of radius b. 2