Problem 1) (10 points) Let a be a natural number, and $b = 10^a - 4$. Prove that $10^b - 1$ is divisible by 7.

Problem 2) (15 points)

a) Show that
\[
\frac{22}{7} - \pi = \int_0^1 \frac{x^4(1-x)^4}{1+x^2} \, dx.
\]

b) Prove that if n is a multiple of 4, then there are rational numbers α and β so that
\[
\int_0^1 \frac{x^n(1-x)^n}{1+x^2} \, dx = \alpha + \beta \pi.
\]

c) Find the value of β for n such a multiple of 4. (β depends on n.)

d) Show that
\[
\lim_{n \to \infty} \int_0^1 \frac{x^n(1-x)^n}{1+x^2} \, dx = 0.
\]

Problem 3) (15 points) Suppose ABCD is a cyclic quadrilateral, as shown, with side $AD = d$, where d is the diameter of the circle. $AB = a$, $BC = a$, and $CD = b$. Suppose a, b, and d are integers with $a \neq b$.

a) Prove that d cannot be a prime number.

b) Determine the minimum value of d.

*Hint: Express the angle ADC in terms of the angle ABC to get a simple equation involving a, b, and d.
Problem 4) (10 points) Show that every real number \(x \) satisfies

\[-1 < \sqrt{x^2 + x + 1} - \sqrt{x^2 - x + 1} < 1.\]

Problem 5) (10 points) Let \(f(x) \) be a continuous function satisfying

\[
\int_0^1 f(x) \, dx = 0
\]

\[
\int_0^1 xf(x) \, dx = 0
\]

\[
\int_0^1 x^2f(x) \, dx = 1.
\]

Prove that the maximum value of \(f(x) \) on the interval \([0, 1]\) is at least 12.

Problem 6) (15 points) Let \(P(x) \) be a polynomial of degree \(n \) such that \(P(t) = 2^t \) for \(t = 1, 2, ..., n+1 \). Is the value of \(P(n+2) \) determined? If yes, compute it.

Problem 7) (15 points) Let \(a, b \in \mathbb{C} \) with \(|a| > |b|\). Show that the locus in \(\mathbb{C} \) of the equation \(|az + bz| = 1\) is an ellipse, and find the ratio of the major axis to the minor axis. (Here \(\mathbb{C} \) denotes the complex numbers.)