Freshman Prize Exam 2006

Full proofs or explanations are expected on all answers.

Please write your netid on your exam booklet.

(1) Find the antiderivative:
\[\int \frac{x^{11}}{\sqrt{x^6 - 1}} \, dx. \]

(2) Prove that the graph of a cubic polynomial \(y = x^3 + bx^2 + cx + d \) is rotationally symmetric about its point of inflection.

(3) The sequence 1, 3, 4, 9, 10, 12, 13, \ldots consists of all positive integers which are powers of 3 or sums of distinct powers of 3. Find the 100th term in this sequence (where 1 is the first term, 3 is the second term, 4 is the third term...).

(4) Suppose there are \(x \) socks in a drawer; some of them white some of them black. It is the case that when two socks are drawn without replacement, there is a probability of exactly \(\frac{1}{2} \) that either both are black or both are white. If \(x \) is at most 2006, what is the largest value \(x \) can take?

(5) For which real numbers \(c \) is
\[\frac{1}{2} (e^x + e^{-x}) \leq e^{cx^2} \]
for all real \(x \)?

(6) Let \(Q \) be a quadrilateral of maximum area among all quadrilaterals with sides \(a, b, c, \) and \(d \).
 a) Prove that \(Q \) can be inscribed in a circle.
 b) Show that the same maximum is obtained regardless of the order of the lengths around the perimeter of the quadrilateral.

(7) Let \(a, b \) and \(c \) be integers whose greatest common divisor is 1. Show that there exist integers \(m \) and \(n \) such that \(a + mc \) and \(b + nc \) are relatively prime (i.e. have greatest common divisor 1.).