The Problem of Moduli for Complex Analytic Manifolds

Adrien Douady, following Masatake Kuranishi

December 8, 2009

In section 3, we will constantly use the idea — to be made familiar — of a Banach manifold and the related idea of a \mathbb{C}-analytic Banach space.

If U is an open set in a Banach space E, and Θ a \mathbb{C}-analytic transformation of U to another Banach space F, the \mathbb{C}-analytic functions h on an open subset of U with values in \mathbb{C} have the form $(\Theta(u), f(u))$, where f is a \mathbb{C}-analytic transformation with values in the dual F' of F, forming an ideal \mathcal{J} of the sheaf $\mathcal{O}(U)$. We assign to $X = \Theta^{-1}(0)$ the sheaf \mathcal{O}/\mathcal{J}. For the purpose of exposition, it suffices to define the \mathbb{C}-analytic Banach spaces to be locally isomorphic to a model of this type.

1 The Manifold of Complex Structures on a Vectorspace

Let E be a vectorspace of dimension $2n$ over \mathbb{R}. For all complex structures ϕ on E, there is a unique \mathbb{C}-linear transformation from $\mathbb{C} \otimes E$ to (E, ϕ) [prolonging the identity?]; its kernel K_ϕ is a complex subspace of $\mathbb{C} \otimes E$. We therefore obtain a bijection from the space $\Phi(E)$ of complex structures on E to the space of complex subspaces K of $\mathbb{C} \otimes E$ such that $\mathbb{C} \otimes E = K \otimes \bar{K}$. When $\Phi(E)$ is identified with an open subset of the Grassmannian of $\mathbb{C} \otimes E$, it then inherits the structure of a complex analytic manifold.

Let ϕ_0 be a complex structure on E; set $K_0 = K_{\phi_0}$. For all complex structures ϕ sufficiently close to ϕ_0, K_ϕ is the graph of a \mathbb{C}-linear transformation $u_\phi : K_0 \rightarrow \bar{K}_0$. The projection p'' (resp. p') from E to K_0 (resp. K_ϕ) is an isomorphism (resp. anti-isomorphism) for ϕ_0[?]. To ϕ there corresponds a \mathbb{C}-linear transformation $\omega_\phi = p''^{-1} \circ u_\phi \circ p'$ from (E, ϕ_0) to itself, and the map $\phi \mapsto \omega_\phi$ is a chart on $\Phi(E)$ defined near ϕ_0.

1
This transformation identifies \((E, \phi_0)\) with \((E, \phi)\) and is \(\mathbb{R}\)-linear, so it is of the form \(f' + f''\), where \(f'\) is \(\mathbb{C}\)-linear and \(f''\) is \(\mathbb{C}\)-antilinear. We then have \(\omega_\phi = f^{-1} \circ f''\).

2 The Relative Frobenius Complex

Let \(V_0 = (V, \phi_0)\) be a compact complex analytic manifold, and let \(V\) be the \(\mathbb{R}\)-analytic sub-bundle [sous-jacent] corresponding to the complex structure \(\phi_0\). By considering for each point \(x \in V\) the chart of \(\Phi(T_X(V))\) defined for \(\phi_0(x)\), we associate a unique almost-complex \(\mathbb{R}\)-analytic structure \(\phi\) on \(V\) close enough to \(\phi_0\) in the \(C^1\) sense, an \(\mathbb{R}\)-analytic morphism which is \(\mathbb{C}\)-antilinear from the tangent fibers \(T(V_0)\) to themselves, i.e. a form \(\omega_\phi\) of type \((0, 1)\) with values in \(T(V_0)\). For \(\phi\) to be integrable, it suffices for \(\omega = \omega_\phi\) to satisfy \(d''\omega - [\omega, \omega] = 0[1]\). In this case \(\phi\) is a sub-bundle [sous-jacent?] with a unique \(\mathbb{C}\)-analytic structure (see for example [3], p. 36).

Consider the space \(\Phi(V)\) of pairs \((x, \phi)\), where \(x \in V\) and \(\phi \in \Phi(T_X(V))\); this is a \(\mathbb{C}\)-analytic bundle over \(V\) (i.e., an \(\mathbb{R}\)-analytic manifold given by the submersion of \(V\) and a \(\mathbb{C}\)-analytic structure on the fibers). If \(S\) is a \(\mathbb{C}\)-analytic space, \(S \times V\) is a \(\mathbb{C}\)-analytic bundle over \(V\). We then define an \(\mathbb{R}\)-analytic almost-complex structure on \(V\), parameterized by \(S\) to be an \(\mathbb{R}\)-analytic morphism, \(\mathbb{C}\)-analytic on the fibers, of \(\mathbb{C}\)-analytic bundles over \(V\), \(S \times V \longrightarrow \Phi(V)\). Likewise, we define the forms of type \((p, q)\) with values in \(T(V_0)\) relative to \(S\). We then define the operators \(d''\) and \([,\] \) on these forms, again relative to the parameter \(S\). An almost-complex structure \(\phi\) on \(V\) parameterized by \(S\) will be called integrable if the form \(\omega = \omega_\phi\) parameterized by \(S\) satisfies the equation \(d''\omega - [\omega, \omega] = 0\).

PROPOSITION 1. Let \(\phi\) be an integrable \(\mathbb{R}\)-analytic almost-complex structure on \(V\) parameterized by \(S\). Then \(\phi\) has unique \(\mathbb{C}\)-analytic sub-bundle [sous-jacent] structure in \(S \times V\), which we also will call \(\phi\). On setting \(X = (S \times V, \phi)\), the projection \(X \longrightarrow S\) is a smooth map, and for any \(x \in X\), \(S \times \{x\}\) is a \(\mathbb{C}\)-analytic subspace of \(X\).

The proof is analogous to that of [3].

3 Manifolds of Transformations

Suppose \(M\) is a compact manifold of class \(C^r\), and \(V\) a \(\mathbb{C}\)-analytic manifold. The space \(C^r(M; V)\) is equipped with the structure of a \(\mathbb{C}\)-analytic Banach manifold, and

1. The lack of difficulty comes from the assumption that \(\phi\) is \(\mathbb{R}\)-analytic. There is a far more delicate introduction of parameters in Nirenberg’s proof for the \(C^\infty\) case.
$T^r C^r(M; V)$ is identified with the Banach space of C^r-sections in the fibers $f^* T(V)$ on M.

More generally, suppose S is a C-analytic space and X a C-analytic bundle over S. The space $C^r(M; X)$ of C^r maps from M to the fibers of X is a trivial C-analytic Banach bundle over S; that is, at any point of M there is a neighborhood on which $f : M \to X_S$ [induces?] is an S-isomorphism with the product of the a neighborhood of $s \in S$ with an open set in a Banach space.

Likewise, if E is a C-analytic bundle over M, the space of C^r-sections of E is given the structure of a C-analytic Banach manifold. In particular, if M is a manifold of class C^{r+1}, the set $\Phi^r(M)$ of almost-complex structure of class C^r on M is a C-analytic Banach manifold.

With these notations we have defined the set $\text{Diff}^{r+1}(M; X)$ of C^{r+1} diffeomorphisms from M to the fiber of X is an open set in $\text{Diff}^r(M; X)$, and we have a C-analytic map of $\text{Diff}^{r+1}(M; X)$ to $\Phi^r(M)$ which from $f : M \to X_S$ associates $f^*(\phi_S)$, where ϕ_S is the complex structure on X_S.

The same considerations do not entirely apply to the case $r = k + \alpha \ [1]$. One could instead use the maps of class H^s if s is large enough.

4 Local Study of $\Phi^r(V)$

Suppose, as in section 2, $V_0 = (V, \phi_0)$ is a compact C-analytic manifold. We define $\Omega^{p,q}$ to be the Banach space of C^r forms of type (p, q) on V_0 with values in the tangent fibers $T(V_0)$. The chart defined by ϕ_0 takes a neighborhood of ϕ_0 to $\Phi^r(V)$ and a neighborhood of 0 to $\Omega^{0,1}$. [2]

The C-analytic Banach space $\Psi^r(V)$ of integrable structures is defined on a chart by the equation $\Theta(\omega) = 0$, where $\Theta : r\Omega^{0,1} \to r^{-1} \Omega^{0,2}$ is the analytic map defined by $\Theta(\omega) = d''\omega - [\omega, \omega]$. The tangent map of Θ is $d'' = d''$. If $r > 1$ is non-integral[?], which we will assume from now on,

\[d' : r\Omega^{0,0} \to r\Omega^{0,1}, \quad d'' : r\Omega^{0,1} \to r^{-1}\Omega^{0,2} \]

are homomorphisms with closed image. Let us give V_0 an \mathbb{R}-analytic hermitian structure, and define δ'_1 and δ'_2 to be the adjoints of δ'_0 and δ'_1 relative to this metric. We then have

\[r\Omega^{0,1} = \text{Im} \ d''_0 \oplus \ker \delta'_1 \quad \text{and} \quad r\Omega^{0,2} = \text{Im} \ d''_1 \oplus \ker \delta'_2 = \{ \text{dothis or dothis?} \} \]

Suppose $\Sigma = \Theta^{-1}(\ker \delta'_2)$. The implicit function theorem then shows that, in a neighborhood fo O, Σ is a C-analytic Banach submanifold of $r\Omega^{0,1}$ containing $\Phi^r(V)$, and $T_0(\Sigma) = \ker d''_1$.

Suppose \(H = \Sigma \cap \text{Ker } \delta'_1 \); close to 0, \(H \) is a \(\mathbb{C} \)-analytic submanifold of finite dimension in \(\Sigma \), and \(T_0(H) \) is the vector space of harmonic \((0, 1)\)-forms with values in \(T(V_0) \), which may be identified with \(H^1(V_0; \Theta) \), when \(\Theta \) is the sheaf of holomorphic vector fields on \(V_0 \). \(H \) can be defined by the equation

\[
\delta'(d'' \omega - [\omega, \omega]) + d'' \delta' \omega = 0.
\]

By the theory of elliptic equations, any form \(\omega \in H \) is \(\mathbb{R} \)-analytic, and the injection of \(H \) into \(\Omega^{0,1}(V) \) defines on \(V \) the almost-complex structure parameterized by \(H \).

Now consider the subspace \(S \subset H \) defined by \(\Theta(\omega) = 0 \). Its Zariski tangent space at 0 is \(T_0(H) \). The injection of \(S \) into \(H \) defines on \(V \) an integrable \(\mathbb{R} \)-analytic almost-complex structure parameterized by \(S \). We note that \(X \) is the \(\mathbb{C} \)-analytic space obtained from \(S \times V \) by providing the structure we have just defined.

5 Kuranishi’s Theorem

The \(\mathbb{C} \)-analytic space \(X \), smoothly and properly embedded in the marked space \((S, s_0) = 0\), along with the identification \(i : V_0 \longrightarrow X_0 \), enjoys the following semi-universal property:

THEOREM: For all \(\mathbb{C} \)-analytic marked spaces \((S', s'_0)\), all \(\mathbb{C} \)-analytic spaces \(X \) smoothly and properly embedded in \(S' \), and for all isomorphisms \(i' : V_0 \longrightarrow X'_0 \), there exists a neighborhood \(S'' \) of \(s'_0 \) in \(S' \), a map \(f : (S'', s'_0) \longrightarrow (S, s_0) \) (not necessarily unique), and a \(S'' \)-isomorphism \(g : X'|_{S''} \longrightarrow f^*(X) \) such that \(g_{s'_0} = i \circ i'^{-1} \).

Proof: Consider the \(\mathbb{C} \)-analytic smooth subspace \(\mathcal{D} = \text{Diff}^{r+1}(V; X) \) of \(S \) with the basepoint \(e = I_{V_0} \). We have a section \(\sigma : S \longrightarrow \mathcal{D} \) coming from the identity \(S \times V = X \), and a morphism \(\rho : \mathcal{D} \longrightarrow \Phi^r(V) \) such that, for \(f : V \longrightarrow X_S \), \(\rho(f) = f^*(\phi_S) \), where \(\phi_S \) is the complex structure on \(X_S \). Then the composition \(\rho \circ \sigma : S \longrightarrow \Phi^r(V) \) is a canonical injection. The tangent map of \(\rho : \mathcal{D}_0 = \mathcal{D}_{s_0} \longrightarrow \Phi^r(V) \) at \(e \) is \(d'_0 : r+1\Omega^{0,0} \longrightarrow r\Omega^{0,1} \), which is a homomorphism with finite-dimensional kernel.

Let \(\mathcal{E} \) be a \(\mathbb{C} \)-analytic Banach subspace of \(\mathcal{D} \), smoothly embedded in \(S \), containing \(\sigma(S) \), and such that \(r+1\Omega^{0,0} = \text{Ker } d'_0 \oplus T(\mathcal{E}_0) \). The restriction of \(\rho \) to \(\mathcal{E} \) is an immersion of \(\mathcal{E} \) into \(\Sigma \) at \(e \), because the tangent map is an isomorphism. We have \(S \subset \rho(\mathcal{E}) \subset \Phi^r(V) \subset \Sigma \), these inclusions to be seen as analytic maps. By the following lemma we will show that

\[
\rho(\mathcal{E}) = \Phi^r(V) \quad \text{in a neighborhood of } 0. \tag{1}
\]
LEMMA 1. Let H be a neighborhood of 0 in C^k, U a neighborhood of 0 in a Banach space, and Φ a \mathbb{C}-analytic subspace of $H \times U$. Suppose $S = (H \times \{0\}) \cap \Phi$. If $\Phi \supset S \times U$, we have $\Phi = S \times U$ in a neighborhood of 0 on $H \times U$.

The lemma is proven in section 6.

For proving the assertion (1) from the lemma, it suffices to trivialize \mathcal{E} in a neighborhood of e, and to extend $\rho: \mathcal{E} = S \times U \longrightarrow \Sigma$ to a \mathbb{C}-analytic map of $H \times U$ into Σ, which is then a chart on Σ.

Now let (S', s'_0) be a \mathbb{C}-analytic space with basepoint, X' a \mathbb{C}-analytic space bundle over S', and $i': V_0 \longrightarrow X'$ an isomorphism. The analytic space $\mathcal{D}' = \text{Diff}^{r+1}(V, X')$ being smooth[?], there exists a \mathbb{C}-analytic section $\sigma': S'' \longrightarrow \mathcal{D}'$ on a neighborhood S'' of s'_0 in S' such that $\sigma'(s'_0) = i'$. Additionally, we have as before a morphism $\sigma': \mathcal{D}' \longrightarrow \Phi'(V)$ such that, for $f': V \longrightarrow X'_{s'}$, $\rho(f) = f^*(\phi'_{s'})$. Since $\rho: \mathcal{E} \longrightarrow \Phi'(V)$ is a local isomorphism at the point $e = i$ one can, by decreasing S'', write $\rho' \circ \sigma'$ in a unique way as $\rho \circ h$, where h is a \mathbb{C}-analytic map from (S'', s'_0) to (\mathcal{E}, e).

Composing h with the projection $\mathcal{E} \longrightarrow S$, we obtain a map $f: (S'', s'_0) \longrightarrow (S, s_0)$. To h (resp. to σ') there corresponds an f-morphism (resp. an S''-morphism) \tilde{h} (resp. $\tilde{\sigma}'$) of $S'' \times V$ to X (resp. to X'), of class C'', partially \mathbb{C}-analytic with respect to S''. The relation $\rho' \circ \sigma' = \rho \circ \sigma$ shows that the almost-complex structures which S'' induces on V by X and X' through \tilde{h} and $\tilde{\sigma}'$ coincide, so that the map $g = \tilde{h} \circ \tilde{\sigma}'^{-1}: X'_{s'} \longrightarrow X$ is \mathbb{C}-analytic, which completes the proof of the theorem.

Remark: f depends on the choice of \mathcal{E}. If $H^0(V_0; \Theta) = 0$, we must have $\mathcal{E} = \mathcal{D}$ on a neighborhood of e; in this case, f and g are unique, and $X \longrightarrow S$ enjoys a universal property.

6 Proof of Lemma 1

If f is a function on $H \times U$ and $u \in U$, we denote by f_u the function $x \mapsto f(u, x)$. For all polycylinders $K \subset H$ of rays r_1, \ldots, r_k, we let B_K denote the Banach space of continuous functions on B_K [surely K?] which are holomorphic on the interior [4].

Now let f_1, \ldots, f_p be \mathbb{C}-analytic functions on a neighborhood of 0 in $H \times U$ belonging to the ideal defined by Φ, and such that f_0, \ldots, f_p generate the ideal \mathcal{J} defined by S in a neighborhood of 0; we define f_u to be the homomorphism of sheaves $\mathcal{O}^p \longrightarrow \mathcal{O}$ defined by $f_u(h_1, \ldots, h_p) = \sum f_u^i h_j$. If K is a privileged neighborhood of 0 in H for f, i.e. a polycylinder such that f_0 induces a homomorphism $B_K^p \longrightarrow B_K$ having the closed subspace $I_K \subset B_K$ as the image, where I_K is formed of functions h such that the germ at 0 is in \mathcal{J}. Since $\Phi \supset S \times U$, we have $f_u(B_K) \subset I_K$ for all u and, since f_0 is an epimorphism, f_u will be an epimorphism for u sufficiently close.

\footnote{In the sense of analytic spaces. The lemma is false, if one assumes only inclusion as sets.}
to 0. We can therefore write \(f_0 \) in the form \(\sum g_{ij}^u f_j^u \) and, by utilizing a complement of Ker \(f_0 \), we can choose the \(g_{ij}^u \) to depend analytically on \(u \). This shows that the functions \((x, u) \mapsto f_0^u(x)\), which generate the ideal defining \(S \times U \), also belong to the ideal defining \(\Phi \). Q.E.D.

7 A Description of \(S \)

\(H \) is a submanifold of \(r^1\Omega^{0,1} \), and \(T_0(H) = H^1 = \text{Ker } d''_1 \cap \text{Ker } \delta'_1 \) is identified with \(H^1(V_0; \Theta) \); there exists a neighborhood \(U \) of 0 in \(H^1 \) and a chart \(\eta : U \to H \) such that \(\eta(u) = u + o(\|u\|) \). The subspace \(S \) of \(H \) is defined by \(\Theta(\omega) = 0 \), where \(\Theta \) is the analytic map of \(H \) to \(r^1\Omega^{0,2} \) defined by \(\Theta(\omega) = d''_2 \omega + [\omega, \omega] \).

PROPOSITION 2. There exists a \(C \)-analytic map \(\zeta : U \to H^2(V_0; \Theta) \) such that \(\eta \) induces a local isomorphism \(\zeta^{-1}(0) \to S \). We can choose \(\zeta \) to be of the form \(\zeta(u) = [u \cup u] + o(\|u\|^2) \), where \([u \cup u] \) is the cup product.

Proof: We have the equations \(\Theta(\omega) \in \text{Ker } \delta'_2 \) and \(d''(\Theta(\omega)) = 2[\omega, \Theta(\omega)] \) for \(\omega \in H \). Additionally,

\[
r^{-2}\Omega^{0,3} = \text{Im } d''_2 \oplus \text{Ker } \delta'_3.
\]

Now consider the set \(F \) of pairs \((\omega, \alpha) \in H \times \text{Ker } \delta'_2\) such that \(d'' \alpha - 2[\omega, \alpha] \in \text{Ker } \delta'_3\). The implicit function theorem implies that \(F \) is a sub-vectorbundle of \(H \times \text{Ker } \delta'_2\), and the projection \(p : r^{-1}\Omega^{0,2} \to H^2 = \text{Ker } d''_2 \cap \text{Ker } \delta'_2 \) induces a local isomorphism of \(F \) onto \(H \times H^2 \). Since \(\Theta \) defines a section of \(F \), we have

\[
\Theta^{-1}(0) = (p \circ \Theta)^{-1}(0),
\]

and \(\zeta = -p \circ \Theta \circ \eta \) satisfies the first condition.

We have

\[
-p(\Theta(\omega)) = p([\omega, \omega]),
\]

and

\[
\zeta(u) = p([\eta(u), \eta(u)]) - p([u, u]) + o(\|u\|^2).
\]

However, \([u \sim u] = p([u, u])\), which completes the proof.

References

 See also: