Geometric Realizations of $H^3(X, \mathbb{Z})$

Matt Noonan

January 28, 2006

1 Projective Hilbert Space Bundles

Throughout this section, \mathcal{H} will denote an infinite-dimensional separable Hilbert space.

1.1 The Topological Classification

The conceptually simplest way of constructing a geometric realization of $H^3(X, \mathbb{Z})$ is by classifying projective Hilbert space bundles over X (that is, bundles with fiber $\mathbb{P}H$).

Lemma 1.1. The unit sphere $S \subset \mathcal{H}$ is contractible.

Proof. The lemma is easiest to show in $\mathcal{H} = L^2([0, 1], dx)$. Let $f \in S \subset \mathcal{H}$ be given, and define

$$h_t(f)(x) = \begin{cases} 1 & \text{if } x < t \\ f(t + (1-t)x) & \text{if } x \geq t \end{cases}$$

h_t clearly takes S to itself, $h_0 = \text{id}$ and $h_1 : f \mapsto 1$, which completes the proof. \(\square\)

Let $GL(\mathcal{H})$ be the group of bounded linear operators on \mathcal{H} with bounded inverses.

Theorem 1.2. $GL(\mathcal{H})$ is contractible.

Proof. First fix a filtration of

$$\mathcal{H} = \mathcal{H}_0 \supset \mathcal{H}_1 \supset \mathcal{H}_2 \supset \ldots$$

so $\mathcal{H}_k/\mathcal{H}_{k+1}$ is 1-dimensional. Using this filtration, we can write any $T \in GL(\mathcal{H})$ as

$$T = U \cdot \Delta$$

1
where Δ is “upper triangular” with respect to the filtration and U is unitary. Since the upper triangular operators are contractible, the problem is reduced to understanding the topology of $U(\mathcal{H})$.

Now consider the coset space $U(\mathcal{H}_k)/U(\mathcal{H}_{k+1})$. This is just the tautological $U(1)$-bundle over the Grassmannian of codimension-1 subspaces of \mathcal{H}_k. Since this is isomorphic to the unit sphere S, $U(\mathcal{H}_k)$ retracts onto $U(\mathcal{H}_{k+1})$. Continuing up the filtration retracts $U(\mathcal{H})$ to the identity.

We want to classify $\mathbb{P}_\mathcal{H}$-bundles over some finite-dimensional manifold X. The transition functions for a $\mathbb{P}_\mathcal{H}$-bundle lie in the group $PGL(\mathcal{H})$, isomorphic to $GL(\mathcal{H})/\mathbb{C}^*$. This leads to the exact sheaf sequence

$$1 \longrightarrow \mathbb{C}^* \longrightarrow GL(\mathcal{H}) \longrightarrow PGL(\mathcal{H}) \longrightarrow 1$$

of the relevant structure groups, yielding the long exact sequence

$$\ldots \longrightarrow H^1(X, GL(\mathcal{H})) \longrightarrow H^1(X, PGL(\mathcal{H})) \overset{\partial}{\longrightarrow} H^2(X, \mathbb{C}^*) \longrightarrow H^2(X, GL(\mathcal{H})) \longrightarrow \ldots$$

in cohomology. Since $GL(\mathcal{H})$ is contractible any $GL(\mathcal{H})$-bundle has a section, so $H^1(X, GL(\mathcal{H})) = 1$. Likewise1, $H^2(X, GL(\mathcal{H})) = 1$ so we have an isomorphism

$$1 \longrightarrow H^1(X, GL(\mathcal{H})) \overset{\sim}{\longrightarrow} H^2(X, \mathbb{C}^*) \longrightarrow 1$$

Combining this with the exponential sequence $\mathbb{Z} \rightarrow \mathbb{C} \rightarrow \mathbb{C}^*$ gives an isomorphism

$$H^1(X, GL(\mathcal{H})) \cong H^2(X, \mathbb{C}^*) \cong H^3(X, \mathbb{Z})$$

In other words, projective Hilbert space bundles are topologically classified by $H^3(X, \mathbb{Z})$.

Unfortunately, it is not very easy to construct a $\mathbb{P}_\mathcal{H}$-bundle with a given class $\alpha \in H^3(X, \mathbb{Z})$.

1.2 Why $PGL(\mathcal{H})$ Bundles?

Let G be a group, and recall that a $K(G, n)$ is a topological space X such that

$$\pi_k(X) \cong \begin{cases} G & \text{if } k = n \\ 0 & \text{otherwise} \end{cases}$$

1At least, given the right definition for $H^2(X, GL(\mathcal{H}))$. We know that multiplication in $GL(\mathcal{H})$ is abelian up to homotopy, so if we require the Čech cochains to match only up to homotopy, $H^2(X, GL(\mathcal{H}))$ makes sense and is indeed trivial. This follows in general from the fact that $GL(\mathcal{H})$ is the total space of the universal \mathbb{C}^*-bundle over $K(\mathbb{Z}, 2)$.

2
Of course when \(n \geq 2 \), \(G \) must be abelian.

Let us consider the spaces \(K(\mathbb{Z}, n) \) for small \(n \). When \(n = 0 \), \(\mathbb{Z} \) itself is \(K(\mathbb{Z}, 0) \). When \(n = 1 \), we can take the group \(U(1) \) to be \(K(\mathbb{Z}, 1) \). Any \(U(1) \)-bundle \(L \in H^1(X, U(1)) \) is topologically determined by its Chern class \(\delta L \in H^2(X, \mathbb{Z}) \). Is it merely an accident that \(K(\mathbb{Z}, 1) \) and \(K(\mathbb{Z}, 0) \) appear together here?

To answer this, we must make a short excursion into the topology of loop spaces and classifying spaces. In general, we can construct \(K(A, n+1) \) by taking the classifying space of \(K(A, n) \):

\[
\mathcal{B}K(A, n) = K(A, n+1)
\]

For example, \(\mathcal{B}K(A, 0) = \mathcal{BZ} = U(1) \) since

\[
0 \to H^0(X, \mathbb{Z}) \to H^0(X, \mathbb{R}) \to H^0(X, U(1)) \to H^1(X, \mathbb{Z}) \to 0
\]

is exact, so a \(\mathbb{Z} \)-bundle is given by counting the winding number of some \(U(1) \)-valued function. In other words, if \(\Sigma \to U(1) \) is the \(\mathbb{Z} \)-bundle

\[
\Sigma = \mathbb{R} \exp 2\pi i U(1)
\]

then every \(\mathbb{Z} \)-bundle \(E \to X \) satisfies

\[
E \cong f^*\Sigma
\]

for some \(f : X \to U(1) \).

Now let us apply the same trick to compute \(K(\mathbb{Z}, 2) \). \(K(\mathbb{Z}, 2) \) is the classifying space of \(K(\mathbb{Z}, 1) \cong U(1) \). Every \(U(1) \)-bundle is the pullback of the tautological bundle on some projective space \(\Sigma \to \mathbb{C}P^n \), so the classifying space is \(\mathbb{C}P^\infty \) (or the homotopically equivalent \(\mathbb{P}\mathcal{H} \)).

The above discussion presents the motto “\(H^n(X, \mathbb{Z}) \) classifies \(K(\mathbb{Z}, n) \)-bundles on \(X \)”. This gives us an easy way to find geometric realizations of \(H^n(X, \mathbb{Z}) \), but in practice these realizations become unwieldy very quickly. For example, the classifying space of \(PGL(\mathcal{H}) \)-bundles is a quotient of \(U(V_{HS}) \) where \(V_{HS} \) is the space of Hilbert-Schmidt operators on \(\mathcal{H} \).

All of this fits in to the more general program of realizing geometric structures like principal bundles on the loop space \(LX \) (or path space \(PX \)) as somewhat more complex structures on the underlying space \(X \). In particular, we may take advantage of the fact that

\[
H^n(LX, A) \cong H^{n+1}(X, A)
\]

Even better, looping \(X \) is closely related to taking the classifying space of \(A \), so we have

\[
H^n(LX, A) \cong H^n(X, BA)
\]
In the case analyzed above, we can start with linebundles on LX and find on the one hand

$$H^1(LX, U(1)) = H^1(X, BU(1)) = H^1(X, PGL(\mathcal{H}))$$

and on the other

$$H^1(LX, U(1)) = H^2(X, U(1)) = H^3(X, \mathbb{Z})$$

giving a purely abstract proof that $PGL(\mathcal{H})$-bundles on X are classified by $H^3(X, \mathbb{Z})$. But this calculation also tells us why we might care — any time a linebundle appears naturally on loop space, there is a corresponding $PGL(\mathcal{H})$-bundle floating around on the base space.

Still, it would be nice to work out a construction of the projective Hilbert space bundle corresponding to a given class in $H^3(X, \mathbb{Z})$. It is extremely tempting to search for a family of classical mechanical systems over X whose quantized space of states gives such a bundle. Perhaps the integral class could be read directly from the classical mechanics of the family.