The aim of this note is to define a strict 2-group associated to each group presentation and apply this 2-group to the problem of classifying arbitrary group extensions. Before we begin, we need to understand homomorphisms in the category of strict 2-groups.

Let G and G' be strict 2-groups (that is, categories internal to Groups). Then a 2-group homomorphism is a functor

$$\Phi : G \rightarrow G'$$

internal to Groups.

While this definition is conceptually useful, we will also need to understand Φ in terms of the underlying object- and arrow-homomorphisms. For the 2-group G, let G_0 be the group of objects, G_1 the group of arrows with source 1, α the action of G_0 on G_1 and $t : G_1 \rightarrow G_0$ the target map. Φ is determined by a pair of homomorphisms (φ_0, φ_1) making the square

$$\begin{array}{ccc}
G_0 & \xrightarrow{\varphi_0} & G_0' \\
t & & t' \\
\downarrow & & \downarrow \\
G_1 & \xrightarrow{\varphi_1} & G_1'
\end{array}$$

commute.

Φ gives a homomorphism of the full arrow group $G_1 \ltimes_\alpha G_0$ only when the equation

$$\alpha'(\varphi_0(x))(\varphi_1(y)) = \varphi_1(\alpha(x)(y))$$

is satisfied. Conversely, any pair (φ_0, φ_1) satisfying this equation and intertwining t with t' will give a homomorphism of 2-groups.
1 The Presentation 2-Group

Let \(\langle \Gamma \mid R \rangle \) be a presentation of the group \(G \). By a presentation we will mean that \(\Gamma \) is a set of symbols and \(R \) is a set of words in those symbols (or their inverses). For example, a presentation of \(SL(2, \mathbb{Z}) \) is given by

\[
\langle s, t \mid s^2, (st)^3 \rangle
\]

Recall the usual construction of a \(K(G, 1) \) from a presentation \(\langle \Gamma \mid R \rangle \): we start with a point, add a loop for each word in \(\Gamma \), add a 2-cell for each relation between words, a 3-cell for each syzygy between relations, and so forth. Note that this cell complex actually has nice algebraic structure: the 2-cells tell you how to get from one word to another, not merely that you can get from one word to another. This is precisely the sort of situation 2-groups are designed to deal with.

Let us now forget about the cells of dimension 3 and higher. Then the resulting cell complex is actually a 2-group:

Definition 1.1. Let \(\langle \Gamma \mid R \rangle \) be a presentation of \(G \). Then the associated **presentation 2-group** is the 2-group \(Pr_{\langle \Gamma \mid R \rangle} \) whose objects are the (reduced) words in \(\Gamma \). There is an arrow from \(w_1 \) to \(w_2 \) whenever \(w_2 = rw_1 \) for some product of relations \(r \).

The presentation 2-group can also be defined as a crossed module

\[
\bar{R} \xrightarrow{t} F_{\Gamma}
\]

where \(F_{\Gamma} \) is the free group on \(\Gamma \), \(\bar{R} \) is the normal closure of \(R \) in \(F_{\Gamma} \), and \(t \) is the inclusion map. The action of words on relations is simply

\[
\alpha(w)(r) = wrw^{-1}
\]

The intertwining property and Peiffer identity are easily verified.

Later, we will use \(Pr_G \) to denote the presentation 2-group associated to the “universal presentation” \(\langle G \mid \bar{R} \rangle \).

2 Group Cohomology

Let \(G \) be a group, \(A \) an abelian group, and \(\alpha : G \rightarrow Aut(A) \) an action of \(G \) on \(A \). We want to classify extensions

\[
1 \rightarrow A \rightarrow X \rightarrow G \rightarrow 1
\]

which are compatible with \(\alpha \).
We define the n-cochains $C^n(G, A)$ to be the abelian group of functions (not homomorphisms!) from G^n to A. There is a coboundary operator $d : C^n(G, A) \longrightarrow C^{n+1}(G, A)$

\[
(df)(g_0, \ldots, g_n) = \alpha(g_0)(f(g_1, \ldots, g_n)) \\
+ \sum_{i=0}^{n-1} (-1)^i f(g_0, \ldots, g_i \cdot g_{i+1}, \ldots, g_n) \\
+ (-1)^n f(g_0, \ldots, g_{n-1})
\]

Direct computation shows that $d \circ d = 0$. As usual, we define $H^n(G, A)$ to be the kernel of d (outgoing) modulo the image of d (incoming).

For small values of n we have

$H^0(G, A) = \{a \in A \mid \alpha(G)(a) = a\}$

$H^1(G, A) = \{f : G \longrightarrow A \mid f(xy) = f(x) + \alpha(x)(f(y)) \}$

$H^2(G, A) = \left\{ \frac{G^2 \longrightarrow A}{\ker d} \mid \alpha(x)(f(y, z)) - f(xy, z) + f(x, yz) - f(x, y) = 0 \right\}$

Now suppose an extension $A \longrightarrow X \xrightarrow{\pi} G$ compatible with α is given. Here, compatibility with α means that for each $x \in \pi^{-1}(g)$ and all h,

$x \cdot h \cdot x^{-1} = \alpha(g)(h)$

Choose an arbitrary section $\psi : G \longrightarrow X$ of π. We do not need ψ to be a homomorphism, just an arbitrary map. To measure how badly ψ fails to be a homomorphism, define the failure function

$f(x, y) = \psi(x) \cdot \psi(y) \cdot \psi(xy)^{-1}$

Note that $\pi(f(x, y)) = 1$, so f actually takes values in H. In fact, f is a cocycle:

\[
(df)(x, y, z) = \alpha(x)(f(y, z)) + f(xy, z)^{-1} + f(x, yz) + f(x, y)
\]

\[
+ \psi(xy) \cdot \psi(yz)^{-1} \cdot \psi(x)^{-1} + \psi(x) \cdot \psi(y) \cdot \psi(xy)^{-1}
\]

\[
= \alpha(x)(f(y, z)) + \phi(x) \cdot f(y, z) \cdot \phi(x)^{-1}
\]

\[
= 0
\]

********** signs are all messed up **********
3 Group Extensions

The goal of this section is to understand group extensions

\[
1 \rightarrow H \xrightarrow{i} X \xrightarrow{\pi} G \rightarrow 1
\]

of \(G\) by \(H\), where we do not assume \(G\) or \(H\) is abelian.

3.1 How 2-Groups Appear in the Extension Problem

First, we recall how split exact sequences lead to semidirect products — we will try to mimic this construction in the non-split case. Suppose we are given a splitting

\[
1 \rightarrow H \xrightarrow{i} X \xrightarrow{\pi} G \rightarrow 1
\]

so \(G \xrightarrow{s} X\) is a homomorphism with \(\pi \circ s = \text{id}\). \(s\) provides us with a “best” representative for each \(H\)-coset. We can then think of any element of \(X\) uniquely as a product of an element in \(G\) by an element in \(H\):

\[
(h, g) \mapsto h \cdot s(g) \in X
\]

The multiplication rule on \(H \times G\) must then be

\[
(h_2, g_2) \cdot (h_1, g_1) = h_2 \cdot s(g_2) \cdot h_1 \cdot s(g_1) = (h_2 \cdot s(g_2) \cdot h_1 \cdot s(g_2)^{-1}, g_2 g_1)
\]

Conversely, given any action \(G \xrightarrow{\alpha} \text{Aut}(H)\) we can construct a group \(X = G \rtimes_\alpha H\) which is a split extension of \(G\) by \(H\).

Unfortunately, most group extensions do not come from split extensions. On the other hand, we can always find a splitting \(G \xrightarrow{\psi} X\) if we do not require that \(\psi\) be a homomorphism.

\[
1 \rightarrow H \xrightarrow{i} X \xrightarrow{\psi} G \rightarrow 1
\]

A set function feels uncomfortable in the category of groups. Luckily, every set function \(G \xrightarrow{\Psi} X\) lifts to a unique homomorphism \(F_G \xrightarrow{\Psi} X\) where \(F_G\) is the free group on the elements of \(G\). Thus, conjugation by \(\Psi\) gives an action of \(F_G\) on \(H\). We will call this action \(\alpha : F_G \longrightarrow \text{Aut}(H)\). Explicitly,

\[
\alpha(w)(h) = \iota^{-1}(\Psi(w) \cdot \iota(h) \cdot \Psi(w)^{-1})
\]
If $r \in \tilde{R}$ then $\Psi(r) \in H$ since $\pi(\Psi(r)) = 1$ Thus, $\alpha(r)$ is an inner automorphism of H when r is a relation. This gives a nontrivial constraint on which homomorphisms Ψ come from an extension: we must have a commutative diagram

\[
\begin{array}{c}
F_G & \xrightarrow{\alpha} & \text{Aut}(H) \\
\downarrow & & \downarrow \text{Ad} \\
\tilde{R} & \xrightarrow{\Psi} & H
\end{array}
\]

Essentially, the map $\Psi : \tilde{R} \to H$ measures how badly Ψ fails to project to a homomorphism $\psi : G \to X$.

The point of this whole construction is that such a diagram is precisely a homomorphism of 2-groups $\Pr_G \xrightarrow{\varphi} \text{AUT}_H$ from the presentation 2-group of G to the automorphism 2-group of H. Conversely, given such a homomorphism we can define an extension of G by H by reading this section backwards.

In summary, we have shown that

Theorem 3.1. Every extension of G by H induces a homomorphism of 2-groups

$$
\Pr_G \longrightarrow \text{AUT}_H
$$

and conversely, each homomorphism of 2-groups induces an extension of G by H.

We can be even more explicit: let $\langle \Gamma_G \vert R_G \rangle$ be a presentation of G and $\langle \Gamma_H \vert R_H \rangle$ a presentation of H. Then

$$
\langle \Gamma_G \cup \Gamma_H \mid R_H \cup R'_G \rangle
$$

is a presentation of X, where

$$
R'_G = \{ r \cdot \varphi_2(r)^{-1}, g \cdot h \cdot g^{-1} \cdot \varphi_1(g)(h)^{-1} \mid r \in \tilde{R}, g \in G, h \in H \}
$$

3.2 An Explicit Construction of the Group Product

In this section, we will find explicit formulas for the multiplication in X in terms of the homomorphisms φ_1 and φ_2. Throughout this section, \otimes will stand for concatenation in a free group.

Let us begin as above with a splitting of $H \to X \to G$ using a function ψ (which is generally not a homomorphism). Let Ψ be the lift of ψ to F_G, so

$$
\Psi(g_1 \otimes \cdots \otimes g_k) = \psi(g_1) \cdot \psi(g_2) \cdots \psi(g_k)
$$
Then the homomorphisms φ_i are defined by

$$\varphi_1(w)(h) = \Psi(w) \cdot h \cdot \Psi(w)^{-1}$$

and

$$\varphi_2(r) = \Psi(r)$$

where w is an arbitrary word in F_G and r is a relation in \bar{R}. Note that $\varphi_2(r)$ is H-valued since it spells a relation in G and therefore is in kernel of the quotient.

Now consider the set $H \times G$. We wish to understand how these pairs relate to elements of X. To each pair, we can associate the element

$$(h, g) \mapsto h \cdot \psi(g) \in X$$

and likewise, to each $x \in X$ we can associate the pair

$$x \mapsto (x \cdot \psi(\pi(x))^{-1}, \pi(x))$$

where π is the quotient map. Now consider the multiplication in terms of these pairs:

$$(h_2, g_2) \cdot (h_1, g_1) = h_2 \cdot \psi(g_2) \cdot h_1 \cdot \psi(g_1)$$

$$= h_2 \cdot \varphi_1(g_2)(h_1) \cdot \psi(g_2) \cdot \psi(g_1)$$

$$= h_2 \cdot \varphi_1(g_2)(h_1) \cdot \Psi(g_2 \otimes g_1)$$

$$= h_2 \cdot \varphi_1(g_2)(h_1) \cdot \Psi(g_2 \otimes g_1 \otimes (g_2g_1)^{-1} \otimes g_2g_1)$$

$$= h_2 \cdot \varphi_1(g_2)(h_1) \cdot \varphi_2(g_2 \otimes g_1 \otimes (g_2g_1)^{-1}) \cdot \psi(g_2g_1))$$

$$= (h_2 \cdot \varphi_1(g_2)(h_1) \cdot \varphi_2(g_2 \otimes g_1 \otimes g_1^{-1}g_2^{-1}), g_2g_1)$$

We clearly see that the product in X is just the semidirect product, twisted by φ_2.

Now we can easily describe generators and relations for X. If $\langle \Gamma_H | R_H \rangle$ is a presentation of H and $\langle \Gamma_G | R_G \rangle$ a presentation of G, then $\langle \Gamma_H \cup \Gamma_G | R_X \rangle$ is a presentation of X, where R_X contains the relations

$$g \otimes h = \varphi_1(g)(h) \otimes g$$

$$h_2 \otimes h_1 = h_2h_1$$

$$g_2 \otimes g_1 = \varphi_2(g_2 \otimes g_1 \otimes g_1^{-1}g_2^{-1}) \otimes g_2g_1$$

4 Classical Cases

In this section, we will suppose a homomorphism $\Pr_{G, \Phi} \longrightarrow \text{AUT}_H$ is given. Φ consists of a homomorphism on objects $\varphi_1 : F_G \longrightarrow \text{Aut}(H)$ and a homomorphism on arrows
\(\varphi_2 : \bar{R} \longrightarrow H \) with the appropriate intertwining properties:

\[
\begin{array}{ccc}
F_{G} & \overset{\varphi_1}{\longrightarrow} & \text{Aut}(H) \\
\downarrow s & & \downarrow \text{Ad} \\
\bar{R} & \overset{\varphi_2}{\longrightarrow} & H
\end{array}
\]

4.1 Direct and Semidirect Products

First, let us analyze what happens when \(\Phi \) is trivial for cells of various dimensions.

What happens if the homomorphism \(\Phi \) is “2-trivial” (meaning \(\varphi_2 \) takes everything to 1)? Then, as noted in the previous section, \(\varphi_1 \) projects to a homomorphism \(s : G \longrightarrow X \). In other words, \(\Phi \) is 2-trivial if and only if it induces a split extension of \(G \) by \(H \).

If \(\Phi \) is “1-trivial” (meaning \(\varphi_1 \) and \(\varphi_2 \) both take everything to 1), then \(G \) has a trivial action on \(H \) — the induced extension is simply the direct sum of \(G \) with \(H \).

It seems that direct products, semidirect products and general extensions are 0-, 1-, and 2-dimensional versions of the same phenomenon.

This also leads us to define a “co-semidirect product” which is trivial in dimension 1 but not in dimension 2. In terms of the underlying homomorphisms, \(\varphi_1 \) is trivial and \(\varphi_2 \) is not. This means that \(\varphi_2 \) must take values in the center \(Z(H) \) of \(H \).

********** what is going on with this?? **********

4.2 Relating \(\Phi \) to \(H^2(G, H) \)

If \(H \) is abelian, it is well-known that extensions of \(G \) by \(H \) with a given action \(G \overset{\alpha}{\longrightarrow} \text{Aut}(H) \) are classified by \(H^2(G, H) \). In this section, we will consider the connections between \(H^2(G, H) \) and the 2-group homomorphism \(\Phi \).

Since \(H \) is abelian, the map \(\text{Ad} : H \longrightarrow \text{Aut}(H) \) is trivial. This forces \(\varphi_1 \) to be trivial on \(i(\bar{R}) \). Equivalently, \(\varphi_1 \) descends to an action of \(G \) on \(H \). At the same time, all restrictions on \(\varphi_2 \) have been removed.

Note that every relation in \(\bar{R} \) can be written as a sequence of elementary relations

\[r_{xy} = x \otimes y \otimes y^{-1}x^{-1} \]

Define the map \(f : G \times G \longrightarrow H \) by

\[f(x, y) = \varphi_2(r_{xy}) = \varphi_2(x \otimes y \otimes y^{-1}x^{-1}) \]

\(f \) is a cocycle:

7
\[df(x,y,z) = \varphi_1(x)(f(y,z)) - f(xy,z) + f(x,yz) - f(x,y) \]
\[= \varphi_1(x)(f(y,z)) + \varphi_2(xyz \otimes z^{-1} \otimes y^{-1}x^{-1}) + \varphi_2(x \otimes yz \otimes z^{-1}y^{-1}x^{-1}) + \varphi_2(xy \otimes y^{-1} \otimes x^{-1}) \]
\[= \varphi_1(x)(f(y,z)) + \varphi_2(x \otimes yz \otimes z^{-1} \otimes y^{-1} \otimes x^{-1}) \]
\[= 0 \]

The last line follows from the fact that, since \(\Phi \) is a 2-group homomorphism,
\[\varphi_1(g)(\varphi_2(r)) = \varphi_2(grg^{-1}) \]

This entire argument works just as well in reverse: if \(\alpha : G \to Aut(H) \) is an action and \(f : G \times G \to H \) a cocycle, then \(\varphi_1 \) is the extension of \(\alpha \) to \(F_G \) and
\[\varphi_2(r_{xy}) = f(x,y) \]
Since \(r_{xy} \) generate the relations, this determines \(\varphi_2 \). To ensure consistency we must have
\[\varphi_2(x \otimes y \otimes y^{-1}x^{-1}) \cdot \varphi_2(xy \otimes z \otimes z^{-1}y^{-1}x^{-1}) = \]
\[\varphi_2(x \otimes y \otimes z \otimes z^{-1}y^{-1} \otimes x^{-1}) \cdot \varphi_2(x \otimes yz \otimes z^{-1}y^{-1}x^{-1}) \]
which is precisely the cocycle condition on \(f \).

4.3 Central Extensions of Loop Groups

5 The Problem of Equivalence

The problem of equivalence is that I can’t figure out equivalence.