Due in class on Thursday, September 27.

1. **Do not do this problem, it is wrong. I’m leaving it here to record my wrongness and to keep the numbers consistent.**

The (open) \(n \)-dimensional simplex is the set \(\Delta^n \subset [0,1]^n \) defined by

\[
\Delta^n = \{(x_1, x_2, \ldots, x_n) \in [0,1]^n : x_1 < x_2 < \cdots < x_n \}.
\]

For example, \(\Delta^2 \) is a triangle, \(\Delta^3 \) is a tetrahedron, and so on.

Let \(m_n \) denote \(n \)-dimensional Lebesgue measure on \([0,1]^n\).

(a) (Warmup) Show that \(m_n(\Delta^n) = \frac{1}{n!} \). (Induction may be helpful.)

(b) Let \(\mu_n \) be the probability measure on \([0,1]^n\) that spreads a unit of mass uniformly on \(\Delta^n \), i.e.

\[\mu_n(A) = n! m_n(A \cap \Delta^n) \]. Show that the sequence \(\{\mu_n\} \) is consistent in the sense of the Kolmogorov extension theorem.

(c) Let \(\mu \) be the limiting measure on \([0,1]^N\) produced by applying the Kolmogorov extension theorem to \(\{\mu_n\} \). If \(\Delta \subset [0,1]^N \) is the set of all strictly increasing sequences which converge to 1, show that \(\mu(\Delta) = 1 \).

(d) On the other hand, if \(m \) is Lebesgue measure on \([0,1]^N\) (i.e. the limiting measure of \(\{m_n\} \)), show that \(m(\Delta) = 0 \).

(e) (Bonus problem) Suppose \(U_1, U_2, \ldots \) is an iid sequence of uniform \((0,1)\) random variables on some probability space. Use the \(U_i \) to directly construct a sequence of random variables \(X_1, X_2, \ldots \) whose joint distribution is \(\mu \).

2. For each of the following sequences of probability measures on \(\mathbb{R} \), determine whether the sequence converges weakly, and if so find its weak limit. \(m \) denotes Lebesgue measure and \(\delta_x \) is the Dirac delta measure at \(x \) (i.e. \(\delta_x(A) = 1 \) if \(x \in A \) and \(0 \) if \(x \notin A \)).

Recall the definition: \(\mu_n \to \mu \) weakly iff for every bounded continuous \(f \), we have

\[\int f \, d\mu_n \to \int f \, d\mu. \]

(a) \(\mu_n \) is uniform measure on \([0,1/n]\) (i.e. \(\mu_n(A) = n \cdot m(A \cap [0,1/n]) \)).

(b) \(\mu_n = \delta_n \).

(c) \(\mu_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{1/i} \).

(d) (Bonus problem) \(\mu_n \) is uniform measure on \([0,n]\), i.e. \(\mu_n(A) = \frac{1}{n} m(A \cap [0,n]) \). (This is maybe a bit tricky to prove. Spend a little time thinking about it but don’t waste your entire week.)

3. (a) Suppose \(X_1, X_2, \ldots, X \) are random variables, and \(X_n \to X \) in probability. Show that \(X_n \to X \) weakly, i.e. if \(\mu_n, \mu \) are the distributions of \(X_n, X \), then \(\mu_n \to \mu \) weakly.

(b) Suppose \(X_1, X_2, \ldots \) are random variables, \(X_n \sim \mu_n \), and \(\mu_n \to \delta_c \) weakly. Show that \(X_n \to c \) in probability.