1. Let X be a random variable. Prove that the following are equivalent:
 (a) X is independent of every random variable Y.
 (b) X is independent of itself.
 (c) For all events $A \in \sigma(X)$, $P(A) = 0$ or $P(A) = 1$. (We say the σ-field $\sigma(X)$ is almost trivial.)
 (d) There exists a constant $c \in \mathbb{R}$ such that $X = c$ a.s.

2. (Like Durrett 2.1.4) Let g_1, \ldots, g_n be probability density functions (i.e. $g_i : \mathbb{R} \to [0, \infty)$ is measurable and $\int_{\mathbb{R}} g_i \, dm = 1$), and define $f : \mathbb{R}^n \to [0, \infty)$ by $f(x_1, \ldots, x_n) = g_1(x_1) \cdots g_n(x_n)$. Show that $X = (X_1, \ldots, X_n)$ is a random vector with density f if and only if X_1, \ldots, X_n are independent random variables where X_i has density g_i.
 (Remark: In Durrett’s version, the g_i are not assumed to be probability densities, i.e. it is not assumed that $\int_{\mathbb{R}} g_i \, dm = 1$. However, one can just rescale them to achieve this.)

3. (a) Let \mathcal{G} be a σ-field, and let $\mathcal{G}_1 \subset \mathcal{G}_2 \subset \ldots$ be an increasing sequence of σ-fields. Suppose that for each n, \mathcal{G} and \mathcal{G}_n are independent. Let $\mathcal{G}_\infty = \sigma(\mathcal{G}_1, \mathcal{G}_2, \ldots)$ be the σ-field generated by the \mathcal{G}_n (i.e. the smallest σ-field such that $\mathcal{G}_n \subset \mathcal{G}_\infty$ for all n). Show that \mathcal{G} and \mathcal{G}_∞ are independent. (Hint: $\bigcup_{n=1}^\infty \mathcal{G}_n$ is a π-system.)
 (b) Let Y be a random variable, and X_1, X_2, \ldots a sequence of random variables such that Y is independent of (X_1, \ldots, X_n) for each n. Show that Y is independent of $\sup_n X_n$. (It is also independent of $\inf_n X_n$, $\lim \sup_n X_n$, etc.) (Hint: Use part (a).)

4. (Durrett 2.1.13) Show that if X, Y are independent discrete random variables, then
 $$P(X + Y = n) = \sum_m P(X = m)P(Y = n - m)$$

5. (Durrett 2.1.14) Recall that a random variable Z has the Poisson distribution with parameter λ if $P(Z = k) = e^{-\lambda} \lambda^k / k!$ for $k = 0, 1, 2, \ldots$; we write $Z \sim \text{Poisson}(\lambda)$. Suppose X, Y are independent with $X \sim \text{Poisson}(\lambda)$, $Y \sim \text{Poisson}(\mu)$. Use the previous exercise to show that $X + Y \sim \text{Poisson}(\lambda + \mu)$.

Due in class on Thursday, September 13.

1. Let X be a random variable. Prove that the following are equivalent:
 (a) X is independent of every random variable Y.
 (b) X is independent of itself.
 (c) For all events $A \in \sigma(X)$, $P(A) = 0$ or $P(A) = 1$. (We say the σ-field $\sigma(X)$ is almost trivial.)
 (d) There exists a constant $c \in \mathbb{R}$ such that $X = c$ a.s.

2. (Like Durrett 2.1.4) Let g_1, \ldots, g_n be probability density functions (i.e. $g_i : \mathbb{R} \to [0, \infty)$ is measurable and $\int_{\mathbb{R}} g_i \, dm = 1$), and define $f : \mathbb{R}^n \to [0, \infty)$ by $f(x_1, \ldots, x_n) = g_1(x_1) \cdots g_n(x_n)$. Show that $X = (X_1, \ldots, X_n)$ is a random vector with density f if and only if X_1, \ldots, X_n are independent random variables where X_i has density g_i.
 (Remark: In Durrett’s version, the g_i are not assumed to be probability densities, i.e. it is not assumed that $\int_{\mathbb{R}} g_i \, dm = 1$. However, one can just rescale them to achieve this.)

3. (a) Let \mathcal{G} be a σ-field, and let $\mathcal{G}_1 \subset \mathcal{G}_2 \subset \ldots$ be an increasing sequence of σ-fields. Suppose that for each n, \mathcal{G} and \mathcal{G}_n are independent. Let $\mathcal{G}_\infty = \sigma(\mathcal{G}_1, \mathcal{G}_2, \ldots)$ be the σ-field generated by the \mathcal{G}_n (i.e. the smallest σ-field such that $\mathcal{G}_n \subset \mathcal{G}_\infty$ for all n). Show that \mathcal{G} and \mathcal{G}_∞ are independent. (Hint: $\bigcup_{n=1}^\infty \mathcal{G}_n$ is a π-system.)
 (b) Let Y be a random variable, and X_1, X_2, \ldots a sequence of random variables such that Y is independent of (X_1, \ldots, X_n) for each n. Show that Y is independent of $\sup_n X_n$. (It is also independent of $\inf_n X_n$, $\lim \sup_n X_n$, etc.) (Hint: Use part (a).)

4. (Durrett 2.1.13) Show that if X, Y are independent discrete random variables, then
 $$P(X + Y = n) = \sum_m P(X = m)P(Y = n - m)$$

5. (Durrett 2.1.14) Recall that a random variable Z has the Poisson distribution with parameter λ if $P(Z = k) = e^{-\lambda} \lambda^k / k!$ for $k = 0, 1, 2, \ldots$; we write $Z \sim \text{Poisson}(\lambda)$. Suppose X, Y are independent with $X \sim \text{Poisson}(\lambda)$, $Y \sim \text{Poisson}(\mu)$. Use the previous exercise to show that $X + Y \sim \text{Poisson}(\lambda + \mu)$.