Math 649

Homework 3
Due October 5, 2006

13. Prove by a direct computation, that
\[e_{11} + e_{22} \quad \text{and} \quad e_{11}^2 + e_{12}e_{21} + e_{21}e_{12} + e_{22}^2 \]
belong to the center of the universal Lie algebra \(U(\mathcal{L}(2)) \) over \(\mathcal{L}(2) \).

14. Choose one of two versions of this problem:
(a) Find, by direct computation, all differential operators of the second order in \(\mathbb{R}^n \) invariant with respect to all parallel translations and rotations.
(b) By referring to I. M. Gelfand’s note “Center of the infinitesimal group ring” prove that any differential operator in \(\mathbb{R}^n \) invariant with respect to all parallel translations and rotations has the form
\[\sum_{k=0}^{m} a_k \Delta^k \]
where \(a_k \) are constants and \(\Delta \) is the Laplacian.

15. Let \((G, M)\) be a homogeneous space of a Lie group \(G \). Prove that, if a stabilizer of \(G \) is compact, then there exists a \(G \)-invariant Riemannian metric on \(M \).

16. Prove that the Euclidean 3-dimensional space with the cross product \(x \times y \) (introduced in elementary courses) is isomorphic to the Lie algebra of \(O(3) \).

17. Let \(\mathcal{A} \) be the group of all automorphisms of a Lie algebra \(L \). Prove that the set \(\mathfrak{A} \) of all derivations \(\varphi \) in \(L \) with \([\varphi, \psi] = \varphi \psi - \psi \varphi \) is the Lie algebra of the group \(\mathcal{A} \).

18. To every \(a \in \mathcal{G} \) there corresponds an inner derivation \(f_a(x) = [a, x] \). Give an example of a derivation in a Lie algebra \(L \) which is not an inner derivation.

19. Prove that \(f(A) = -A^T \) is an automorphism of the Lie algebra \(\mathcal{L}(n) \) of \(n \times n \) matrices but not an inner automorphism.

20. If \(G \) is a linear group in a vector space \(E \) and if \(G \) is the Lie algebra of \(G \), then a bilinear form \(Q(x, y) \) is \(G \)-invariant if and only if \(Q(Ax, y) + Q(x, Ay) = 0 \) for all \(x, y \in E \).

21. Prove that the Lie algebra \(TR(n) \) of all \(n \times n \) upper triangular matrices is solvable by establishing that \(L_k = \{ A \in TR(n) : a_{ij} = 0 \quad \text{for} \quad i + k > j \}, \quad k = 0, 1, 2, \ldots \) are ideals and the quotient algebras \(L_k/L_{k-1} \) are abelian.

22. Prove that the Lie algebra of all \(n \times n \) complex matrices with trace 0 (which corresponds to the group \(SL(n, \mathbb{C}) \)) is semisimple by demonstrating that it has no commutative ideals besides \(\{0\} \).

1. \(e_{ij} \) is a matrix with the entries \(a_{i'j'} = 1 \) for \((i'j') = (ij) \) and the rest of the entries equal to 0.

2. A linear operator \(f \) in \(L \) is an isomorphism if \(f[x, y] = [f(x), f(y)] \) for all \(x, y \) and it is a derivation if \(f[x, y] = [f(x), y] + [x, f(y)] \) for all \(x, y \).

3. Inner automorphisms of \(\mathcal{L}(n) \) are defined by the formula \(f(A) = CAC^{-1} \) where \(C \in L(n) \).

4. A matrix \((a_{ij}) \) belongs to \(TR(n) \) if \(a_{ij} = 0 \) for all \(i > j \).