6. Prove that the 3-dimensional Euclidean space \mathbb{R}^3 with the cross product $x \times y$ is a Lie algebra and that this algebra is isomorphic to the algebra of skew-symmetric 3×3 matrices.

Hint. If e_1, e_2, e_3 is an orthonormal basis in \mathbb{R}^3, then

$$e_1 \times e_2 = e_3, e_2 \times e_3 = e_1, e_3 \times e_1 = e_2.$$

Find 3 linearly independent skew-symmetric matrices E_1, E_2, E_3 such that

$$E_1E_2 - E_2E_1 = E_3, E_2E_3 - E_3E_2 = E_1, E_3E_1 - E_1E_3 = E_2.$$

7. Let $A_t, t \in \mathbb{R}$ be a one-parameter group of $n \times n$ matrices (which means $A_sA_t = A_{s+t}$ for all s, t) such that $A_t \to A_0$ as $t \to 0$. Prove that $A_t = e^{tX}$ for some X. [Consider $B_t = \log A_t$.]

8. Prove that the Campbell-Hausdorff series converges if $\|X\|, \|Y\| < \delta$ for some $\delta > 0$. Find a δ for which this is true.

9. Let $P_n(x, y)$ be the sum of terms of degree m in the Campbell-Hausdorff series. Deduce from Dynkin's formula for P_n that $P_1 = x + y, P_2 = \frac{1}{2}[x, y]$ and find a similar expression for P_3.

By using these expressions, prove that, for every x, y,

$$\lim_{t \to 0} \frac{1}{t^2} e^{tx} e^{ty} e^{-tx} e^{-ty} = [x, y].$$

10. For which k the system of differential operators D, xD, \ldots, x^kD in \mathbb{R} is complete?

Hint. It could be helpful to have an expression for $[x^iD, x^jD]$ for all i, j.

11. Describe the transformation groups in \mathbb{R} corresponding to the Lie algebras with the basis:

(a) D; (b) D, xD; (c) D, xD, x^2D.

12. Compute the Lie algebra corresponding to the group of all transformations in \mathbb{R}^3 preserving the Euclidean metric.

Hint. Find the generators for the one-parameter groups of translations along the coordinate axes and rotations about these axes.