Finite Fields with Prime Power Elements

The goal is to construct finite fields with \(p^n \) elements from the polynomial rings \(\mathbb{F}_p[x] \). The construction will be very similar to that of \(\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \) from \(\mathbb{Z} \), where \(p \) is a prime number.

<table>
<thead>
<tr>
<th>the ring of integers (\mathbb{Z})</th>
<th>the ring of polynomials (\mathbb{F}[x])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division with Remainder: For positive (m, n \in \mathbb{Z}), there exist nonnegative (q, r \in \mathbb{Z}) such that (m = qn + r) with (r < n).</td>
<td>For (f(x), g(x) \in \mathbb{F}[x]) with (g(x) \neq 0), there exist (q(x), r(x)) such that (f(x) = q(x)g(x) + r(x)) and (\deg r(x) < \deg g(x)) or (r(x) = 0).</td>
</tr>
<tr>
<td>Bezout’s identity For positive (m, n \in \mathbb{Z}), there exist (a, b \in \mathbb{Z}) such that (\gcd(m, n) = am + bn).</td>
<td>For (f(x), g(x) \in \mathbb{F}[x]), there exist (a(x), b(x) \in \mathbb{F}[x]) such that (\gcd(f(x), g(x)) = a(x)f(x) + b(x)g(x)).</td>
</tr>
<tr>
<td>Prime number (p)</td>
<td>Irreducible polynomial (p(x))</td>
</tr>
<tr>
<td>the quotient ring (\mathbb{Z}/n\mathbb{Z})</td>
<td>the quotient ring (\mathbb{F}[x]/\langle p(x) \rangle) ((p(x)) not necessarily irreducible)*</td>
</tr>
<tr>
<td>(\mathbb{Z}/n\mathbb{Z}) is a field iff (n) is prime</td>
<td>(\mathbb{F}[x]/\langle p(x) \rangle) is a field iff (p(x)) is irreducible.***</td>
</tr>
</tbody>
</table>

Definition 1. A set \(R \), together with two binary operations \(+, \cdot\) , is called a ring if the following axioms hold.

- (Associativity of addition) \(a + (b + c) = (a + b) + c \) for all \(a, b, c \in R \).
- (Associativity of multiplication) \(a \cdot (b \cdot c) = (a \cdot b) \cdot c \) for all \(a, b, c \in R \).
- (Commutativity of addition) \(a + b = b + a \) for all \(a, b \in R \).
- (Distributivity of multiplication over addition) \(a \cdot (b + c) = a \cdot b + a \cdot c \) for all \(a, b, c \in R \).
- (Existence of additive identity) There is an element in \(R \), denoted by 0, such that \(a + 0 = a \) for all \(a \in R \).
- (Existence of additive inverses) For every element \(a \in R \), there exists an element \((-a) \in R \) such that \(a + (-a) = 0 \).

\(R \) is said to be commutative if

- (Commutativity of multiplication) \(a \cdot b = b \cdot a \) for all \(a, b \in R \).

\(R \) is said to contain the multiplicative identity (or with 1) if

- (Existence of multiplicative identity) There is an element in \(R \), denoted by 1, such that \(1 \cdot a = a \) for all \(a \in R \).

In short, a commutative ring with 1 satisfies all the field axioms except "existence of multiplicative inverse".

Examples 2. The following are rings.

1. Any field \(\mathbb{F} \).
2. \(\mathbb{Z} \).
3. \(\mathbb{Z}/n\mathbb{Z} \).
4. \(LT(V, V) \), the set of linear transformation from \(V \) to itself.
5. \(\text{Fun}(\mathbb{F}, \mathbb{F}) \).
6. \(\mathbb{F}[x] \).
7. \(\mathbb{F}[x_1, \ldots, x_k] \)

Proposition 3. (Division with Remainder) Given \(f(x), g(x) \in \mathbb{F}[x] \) with \(g(x) \neq 0 \), there exist unique \(q(x), r(x) \) such that \(f(x) = q(x)g(x) + r(x) \) and \(\deg r(x) < \deg g(x) \) or \(r(x) = 0 \).

Proof. Fix \(g(x) \). We proceed by induction on \(\deg f(x) \).

When \(\deg f(x) < \deg g(x) \) or when \(f(x) = 0 \), there’s nothing to prove. We can simply set \(q(x) = 0 \) and \(r(x) = f(x) \). This serves as our base case.

Now the induction hypothesis is that the statement is true whenever \(\deg f(x) < n \). (Since we have shown this for \(n = \deg g(x) \), we can assume that \(n \geq \deg g(x) = m \)). When \(\deg f(x) = n \), let \(f(x) = \alpha_n x^n + \ldots + \alpha_0 \) and let \(g(x) = \beta_m x^m + \ldots + \beta_0 \). Then one easily sees that \(f(x) - \alpha_n \beta_m^{-1} x^{n-m} g(x) \) has degree less than \(n \). By induction hypothesis, there exist \(q_1(x), r(x) \) such that \(f(x) - \alpha_n \beta_m^{-1} x^{n-m} g(x) = q_1(x)g(x) + r(x) \) and \(\deg r(x) < \deg g(x) \) or \(r(x) = 0 \). Let \(q(x) = q_1(x) + \alpha_n \beta_m^{-1} x^{n-m} \), the equation above becomes \(f(x) = q(x)g(x) + r(x) \) with \(\deg r(x) < \deg g(x) \) or \(r(x) = 0 \), which completes the proof. \(\square \)

This allows us to perform Euclidean Algorithm: Given \(f(x), g(x) \in \mathbb{F}[x] \) with \(g(x) \neq 0 \), we can successively write down a sequence of equations:

\[
\begin{align*}
f(x) &= q_0(x)g(x) + r_0(x) \\
g(x) &= q_1(x)r_0(x) + r_1(x) \\
r_0(x) &= q_2(x)r_1(x) + r_2(x) \\
r_1(x) &= q_3(x)r_2(x) + r_3(x) \\
\vdots \\
r_{n-2}(x) &= q_{n}(r_{n-1}(x) + r_n(x) \\
r_{n-1}(x) &= q_{n+1}(x)r_n(x) + 0
\end{align*}
\]

such that \(\deg r_i(x) < \deg r_{i-1}(x) \) for all \(i \).

Another consequence of proposition 3 is the following.

Proposition 4. (Root Theorem) Let \(\alpha \in \mathbb{F} \). Then for \(p(x) \in \mathbb{F}[x] \), \(p(\alpha) = 0 \) if and only if \((x - \alpha) | p(x) \).

Proof. Assume \(p(\alpha) = 0 \). By Proposition 3, there exist \(q(x) \in \mathbb{F}[x], r \in \mathbb{F} \) such that \(p(x) = q(x)(x - \alpha) + r \). When \(x = \alpha \), this becomes \(0 = r \), so \(x - \alpha | p(x) \).

Conversely, assume \((x - \alpha) | p(x) \). Then there exists \(q(x) \in \mathbb{F}[x] \) such that \((x - \alpha)q(x) = p(x) \). When \(x = \alpha \), this becomes \(0 = p(\alpha) \). \(\square \)

Definition 5. A non-constant polynomial \(p(x) \) is said to be irreducible if there do not exist two non-constant polynomials \(f(x), g(x) \in \mathbb{F}[x] \) such that \(p(x) = f(x)g(x) \).
Question 6. Is \(x^2 + 1 \) irreducible in \(\mathbb{R}[x] \)? in \(\mathbb{C}[x] \)? in \(\mathbb{F}_2[x] \)? Is \(6 \) irreducible in \(\mathbb{F}_7[x] \)? Is \(2x + 2 \) irreducible in \(\mathbb{F}_7[x] \)?

Examples 7.

1. All polynomials with degree 1 are irreducible in \(\mathbb{F}[x] \).
2. Constants polynomials are not considered irreducible in \(\mathbb{F}[x] \).
3. When \(\mathbb{F} = \mathbb{C} \), the Fundamental Theorem of Algebra and the Root Theorem together imply that the irreducible polynomials in \(\mathbb{C}[x] \) are linear (i.e. of degree 1).
4. When \(\mathbb{F} = \mathbb{R} \), it can be shown that the irreducible polynomials in \(\mathbb{R}[x] \) are either linear or quadratic (i.e. of degree 2) with negative discriminant.
5. When \(\mathbb{F} = \mathbb{F}_2 \), we will show that a complete list of irreducible polynomials in \(\mathbb{F}_2[x] \) of degree 3 is: \(x^3 + x + 1 \), \(x^3 + x^2 + 1 \).

For \(\mathbb{F}[x] \), define \(\langle p(x) \rangle = \{ p(x) \cdot f(x) \mid f(x) \in \mathbb{F}[x] \} \), i.e. the set polynomials that are divisible \(p(x) \). It’s easy to show that \(\langle p(x) \rangle \) is a subspace of \(\mathbb{F}[x] \) so that we can define the quotient vector space \(\mathbb{F}[x]/\langle p(x) \rangle \). Elements in \(\mathbb{F}[x]/\langle p(x) \rangle \) are equivalence classes, and are denoted by \([f(x)]_{\langle p(x) \rangle} \) (or simply by \([f(x)] \) when no confusion arises) as usual. It can be shown that \([f(x)] = [g(x)] \) if and only if \(p(x) | f(x) - g(x) \). Finally, it’s an easy exercise to show that the binary operations \(+, \cdot \), defined by

\[
[f(x)] + [g(x)] = [f(x) + g(x)] \\
[f(x)] \cdot [g(x)] = [f(x)g(x)]
\]

are well defined and turn \(\mathbb{F}[x]/\langle p(x) \rangle \) into a ring. The proof is exactly the same as that for \(\mathbb{Z}/n\mathbb{Z} \).

Definition 8. Let \(f(x), g(x) \in \mathbb{F}[x] \), the greatest common divisor of \(f(x) \) and \(g(x) \), denoted by \(\gcd(f(x), g(x)) \), is the monic polynomial, with greatest degree, that divides both \(f(x) \) and \(g(x) \). Recall that a polynomial is called monic if it’s leading coefficient is 1.

Proposition 9. (Bezout’s Identity) Let \(f(x), g(x) \in \mathbb{F}[x] \). There exist \(a(x), b(x) \in \mathbb{F}[x] \) such that \(\gcd(f(x), g(x)) = a(x)f(x) + b(x)g(x) \).

Proof. The proof will be similar to the analogous statement for \(\mathbb{Z} \), so we only sketch it. We will also refer to the Euclidean Algorithm above. It’s an easy exercise to show that \(\gcd(g(x), r(x)) = \gcd(g(x), q(x)g(x) + r(x)) \) for arbitrary \(g(x), r(x), q(x) \in \mathbb{F}[x] \). Applying this result multiple times to the Euclidean Algorithm above, we get \(\gcd(f(x), g(x)) = \gcd(g(x), r_0(x)) = \gcd(r_0(x), r_1(x)) = \gcd(r_1(x), r_2(x)) = \ldots = \gcd(r_{n-1}(x), r_n(x)). \) Now since \(r_n(x) \) divides \(r_{n-1}(x), \) you may have guessed that \(\gcd(r_{n-1}(x), r_n(x)) = r_n(x) \). This is close, but not quite correct because \(r_n(x) \) needs not be monic. To remedy this, we need to scale \(r_n(x) \) by a constant \(\alpha \in \mathbb{F} \) to make it monic. (More explicitly, if the leading coefficient of \(r_n(x) \) is \(\beta \), we pick \(\alpha = \beta^{-1} \).) In summary, we have \(\gcd(f(x), g(x)) = ar_n(x) \).

The second to last equation in the Euclidean Algorithm allows us to express \(r_n(x) \) as a linear combination of \(r_{n-1}(x) \) and \(r_{n-2}(x) : r_n(x) = r_{n-2}(x) - q_n(x)r_{n-1}(x) \). The third to
last equation allows us to do the substitution \(r_{n-1}(x) = r_{n-3}(x) - q_{n-1}(x)r_{n-2}(x) \) so that
\[
 r_n(x) = r_{n-2}(x) - q_n(x)r_{n-1}(x) = r_{n-2}(x) - q_n(x)(r_{n-3}(x) - q_{n-1}(x)r_{n-2}(x)) = (1 + q_n(x)q_{n-1}(x))r_{n-2}(x) - q_n(x)r_{n-3}(x)
\]
can be written as a linear combination of \(r_{n-2}(x) \) and \(r_{n-3}(x) \). We can repeat this process and eventually find \(a(x), b(x) \in \mathbb{F}[x] \) such that
\[
r_n(x) = a(x)f(x) + b(x)g(x).
\]

In conclusion, \(\gcd(f(x), g(x)) = ar_n(x) = aa(x)f(x) + ab(x)g(x) \)

Theorem 10. \(\mathbb{F}[x] / \langle p(x) \rangle \) is a field if and only if \(p(x) \) is irreducible.

Proof. Assume \(p(x) \) is irreducible. We have seen that \(\mathbb{F}[x] / \langle p(x) \rangle \) is a ring. In order to prove that \(\mathbb{F}[x] / \langle p(x) \rangle \) is a field, it suffices to verify that multiplicative inverse exists. Let \(f(x) \) be a non-zero element in \(\mathbb{F}[x] / \langle p(x) \rangle \), note that this is equivalent to saying that \(p(x) \) does not divide \(f(x) \). Since \(p(x) \) is irreducible, its only monic factors are \(ap(x) \) and 1, where \(a \in \mathbb{F} \) is some constant that makes \(ap(x) \) monic. Since \(p(x) \) does not divide \(f(x) \), neither does \(ap(x) \), so \(\gcd(p(x), f(x)) = 1 \). By Bezout, there exist \(a(x), b(x) \in \mathbb{F}[x] \) such that \(1 = a(x)p(x) + b(x)f(x) \). Passing to the quotient space, this becomes \([1] = [a(x)][p(x)] + [b(x)][f(x)] = [b(x)][f(x)] \). Thus \([b(x)] \) is the multiplicative inverse of \([f(x)] \).

Conversely, assume \(p(x) \) is not irreducible, then \(p(x) = f(x)g(x) \) for some \(f(x), g(x) \in \mathbb{F}[x] \) with degrees \(\geq 1 \). Since \(f(x), g(x) \) are not divisible by \(p(x) \), \([f(x)], [g(x)] \neq 0 \). Suppose by contradiction that \(\mathbb{F}[x] / \langle p(x) \rangle \) is a field, then \([f(x)]^{-1}, [g(x)]^{-1} \) exist. It follows that \([0] = [f(x)]^{-1} \cdot [0] \cdot [g(x)]^{-1} = [f(x)]^{-1}[p(x)][g(x)]^{-1} = [f(x)]^{-1}[f(x)][g(x)]g(x)]^{-1} = [1], \) which is a contradiction.

Theorem 11. Let \(p(x) \in \mathbb{F}_p[x] \) be an irreducible polynomial with degree \(n \). Then \(\mathbb{F}_p[x] / \langle p(x) \rangle \) is a field with \(p^n \) elements.

Proof. We need to count the number of elements in \(\mathbb{F}_p[x] / \langle p(x) \rangle \).

First of all, we will show that every class in \(\mathbb{F}_p[x] / \langle p(x) \rangle \) can be represented by a polynomial with degree less than \(n \). Indeed, let \([f(x)] \in \mathbb{F}_p[x] / \langle p(x) \rangle \). Perform division with remainder, we can find \(g(x), r(x) \) such that \(f(x) = g(x)p(x) + r(x) \) with \(\deg r(x) < n \). Since \(p(x)|f(x) - r(x) \), \([f(x)] = [r(x)] \).

We next show that if \(r_1(x) \) and \(r_2(x) \) are distinct polynomials with degrees \(< n \), then \([r_1(x)] \neq [r_2(x)] \). Indeed, since \(\deg(r_1(x) - r_2(x)) < n = \deg p(x), p(x) \nmid (r_1(x) - r_2(x)) \). Thus \([r_1(x)] \neq [r_2(x)] \).

Combine the results from the last two paragraphs, we see that the number of elements in \(\mathbb{F}_p[x] / \langle p(x) \rangle \) is the same as the number of polynomials in \(\mathbb{F}_p[x] \) with degree \(< n \), which is \(p^n \).

Fact 12. For any positive integer \(n \), there exists an irreducible polynomial in \(\mathbb{F}_p[x] \) with degree \(n \).

Corollary 13. For any positive integer \(n \) and prime number \(p \), there exists a field with \(p^n \) elements.