Definition 1. A **field** is a set \(\mathbb{F} \) together with two binary operations\(^1\) \(+ : \mathbb{F} \times \mathbb{F} \to \mathbb{F} \) (addition) and \(\cdot : \mathbb{F} \times \mathbb{F} \to \mathbb{F} \) (multiplication) and two distinct elements \(0_\mathbb{F}, 1_\mathbb{F} \in \mathbb{F} \) (sometimes denoted simply by \(0, 1 \), or even \(0, 1 \)) that satisfy

(A1) For every \(a, b \in \mathbb{F} \), \(a + b = b + a \).

(A2) For every \(a, b, c \in \mathbb{F} \), \((a + b) + c = a + (b + c) \).

(A3) For every \(a \in \mathbb{F} \), \(0_\mathbb{F} + a = a \).

(A4) For each \(a \in \mathbb{F} \), there exists an element \(b \in \mathbb{F} \) satisfying \(a + b = 0_\mathbb{F} \). We often denote this element \(b \) by \((-a) \).

(M1) For each \(a, b \in \mathbb{F} \), \(a \cdot b = b \cdot a \).

(M2) For each \(a, b, c \in \mathbb{F} \), \(a \cdot (b \cdot c) = (a \cdot b) \cdot c \).

(M3) For every \(a \in \mathbb{F} \), \(1_\mathbb{F} \cdot a = a \).

(M4) For each \(a \neq 0_\mathbb{F} \) in \(\mathbb{F} \), there is an element \(b \in \mathbb{F} \) such that \(a \cdot b = 1_\mathbb{F} \). We often denote this element \(b \) by \((1/a) \).

(M5) For each \(a, b, c \in \mathbb{F} \), \(a \cdot (b + c) = a \cdot b + a \cdot c \).

Definition 2. A **vector space** over a field \(\mathbb{F} \) is a set \(V \) together with two binary operations \(+ : V \times V \to V \) (vector addition) and \(\cdot : \mathbb{F} \times V \to V \) (scalar multiplication), and an element \(\vec{0}_V \) (sometimes simply denoted as \(0 \), or \(0 \)), that satisfy

(A1) For every \(u, v \in V \), \(u + v = v + u \).

(A2) For every \(u, v, w \in V \), \((u + v) + w = u + (v + w) \).

(A3) For every \(v \in V \), \(\vec{0}_V + v = v \).

(A4) For each \(v \in V \), there exists an element \(w \in V \) satisfying \(v + w = \vec{0}_V \). We often denote this element \(w \) by \((−v) \).

(M1) For each \(a \in \mathbb{F} \) and \(u, v \in V \), \(a \cdot (u + v) = a \cdot u + a \cdot v \).

(M2) For each \(a, b \in \mathbb{F} \) and \(v \in V \), \((a + b) \cdot v = a \cdot v + b \cdot v \).

(M3) For each \(a, b \in \mathbb{F} \) and \(v \in V \), \((a \cdot b) \cdot v = a \cdot (b \cdot v) \).

(M4) For each \(v \in V \), \(1_\mathbb{F} \cdot v = v \).

\(^1\)Saying that \(+ \) and \(\cdot \) are binary operations implicitly assumes that they are well-defined.
Definition 3. A ring (with identity) is a set R together with two operations $+: R \times R \to R$ (addition) and $\cdot : R \times R \to R$ (multiplication), and two elements 0_R and 1_R (sometimes denoted simply by 0 and 1), that satisfy

(A1) For every $a, b \in R$, $a + b = b + a$.

(A2) For every $a, b, c \in R$, $(a + b) + c = a + (b + c)$.

(A3) For every $a \in R$, $0_R + a = a$.

(A4) For each $a \in R$, there exists an element $b \in R$ satisfying $a + b = 0_R$. We often denote this element b by $(-a)$.

(M2) For each $a, b, c \in R$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.

(M3) For each $a \in R$, $1_R \cdot b = b \cdot 1_R = b$.

(M5) For each $a, b, c \in R$, $a \cdot (b + c) = a \cdot b + a \cdot c$, and $(a + b) \cdot c = a \cdot c + b \cdot c$.

If also

(M1) For each $a, b \in R$, $a \cdot b = b \cdot a$,

we call R a **commutative ring (with identity)**. In this class all rings have an identity.

Warning: The numbering $M1, M2, etc$ for rings does not match the numbering for vector spaces!

Definition 4. An algebra (with identity) over the field \mathbb{F} is a vector space A over \mathbb{F}, together with an extra operation $\mu : A \times A \to A$ (multiplication, often simply written as $\mu(a, b) = ab$), and an element, 1_A, that, in addition to the vector space axioms, satisfy

(M1) For each $a, b, c \in A$, $a(bc) = (ab)c$.

(M2) For each $a, b, c \in A$, $a(b + c) = ab + ac$, and $(a + b)c = ac + bc$.

(M3) For each $a, b, c \in A$, and $\gamma \in \mathbb{F}$, $(\gamma \cdot a)b = \gamma \cdot (ab) = a(\gamma \cdot b)$.

(M4) For every $a \in A$, $1_A b = b 1_A = b$.

If also

(M5) For each $a, b \in A$, $ab = ba$,

we call A a **commutative algebra (with identity)**. In this class all algebras have an identity.
This page is for scratch work.

Don’t forget to transfer your final work to the exam booklet page where the question is posed!
This page is for scratch work.

Don’t forget to transfer your final work to the exam booklet page where the question is posed!
This page is for scratch work.

Don’t forget to transfer your final work to the exam booklet page where the question is posed!