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An abelian sandpile is a collection of indistin-
guishable chips distributed among the vertices of
a graph. More precisely, it is a function from
the vertices to the nonnegative integers, indicat-
ing how many chips are at each vertex. A ver-
tex is called unstable if it has at least as many
chips as its degree, and an unstable vertex can
topple by sending one chip to each neighboring
vertex. Note that toppling one vertex may cause
neighboring vertices to become unstable. If the
graph is connected and infinite, and the number
of chips is finite, then all vertices become sta-
ble after finitely many topplings. An easy lemma
says that the final stable configuration is inde-
pendent of the order of topplings (this is the rea-
son for calling sandpiles “abelian”). For instance,
start with a large pile of chips at the origin of the
square grid Z2 and perform topplings until ev-
ery vertex is stable. The process gives rise to
a beautiful large-scale pattern (Figure 1). More
generally, one obtains different patterns by start-
ing with a constant number h ≤ 2d−2 of chips at
each site in Zd and adding n chips at the origin;
see Figure 3 for two examples.

Sandpile dynamics have been invented nu-
merous times, attached to such names as chip-
firing, the probabilistic abacus, and the dollar
game. The name “sandpile” comes from statis-
tical physics, where the model was proposed in
a famous 1987 paper of Bak, Tang and Wiesen-
feld as an example of self-organized criticality, or
the tendency of physical systems to drive them-
selves toward critical, barely stable states. In the
original BTW model, chips are added at random
vertices of an N ×N box in Z2. Each time a chip
is added, it may cause an avalanche of topplings.
If this avalanche reaches the boundary, then top-
plings at the boundary cause chips to disappear
from the system. In the stationary state, the dis-
tribution of avalanche sizes has a power-law tail:
very large avalanches occur quite frequently (e.g.,
the expected number of topplings in an avalanche
goes to infinity with N).

To any finite connected graph G we can asso-
ciate an abelian group K(G), called the sandpile
group. This group is an isomorphism invariant of
the graph and reflects certain combinatorial in-
formation about the graph. To define the group,
we single out one vertex of G as the sink and
ignore chips that fall into the sink. The opera-
tion of addition followed by stabilization gives the
set M of all stable sandpiles on G the structure of
a commutative monoid. An ideal of M is a sub-
set J ⊂ M satisfying σJ ⊂ J for all σ ∈ M . The
sandpile group K(G) is the minimal ideal of M
(i.e., the intersection of all ideals). The minimal
ideal of a finite commutative monoid is always
a group. (We encourage readers unfamiliar with
this remarkable fact to prove it for themselves.)

One interesting feature of constructing a group
in this manner is that it is not at all obvious
what the identity element is! Indeed, for many
graphs G the identity element of K(G) is a highly
nontrivial object with intricate structure (Fig-
ure 2).

To realize the sandpile group in a more con-
crete way, we can view sandpiles σ as elements
of the free abelian group ZV , where V is the set
of non-sink vertices of G. Toppling a vertex v
corresponds to adding the vector ∆v to σ, where

∆v,w =






−d(v) if v = w,

1 if v ∼ w,

0 otherwise.

Here v ∼ w denotes adjacency in G, and d(v) is
the degree of vertex v. This observation suggests
that we view two vectors σ, τ ∈ ZV as equivalent
if and only if their difference lies in the Z-linear
span of the vectors ∆v.

The sandpiles lying in the minimal ideal of M
are called recurrent. It turns out that each equiv-
alence class in ZV contains exactly one recurrent
sandpile, and hence

K(G) = ZV /∆ ZV .
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The matrix ∆ = (∆v,w) is called the reduced
Laplacian of G (it is reduced because it does not
include the row and column corresponding to the
sink vertex). According to the matrix-tree the-
orem, the determinant det∆ counts the number
of spanning trees of G. This determinant is also
the index of the subgroup ∆ZV in ZV , and so the
order of the sandpile group equals the number of
spanning trees.

A refinement relates sandpiles to the Tutte
polynomial T (x, y) of G. The number of span-
ning trees of G equals T (1, 1). By a theorem of
Merino López, T (1, y) equals the sum of y|σ|−m+δ

over all recurrent sandpiles σ, where δ is the de-
gree of the distinguished sink vertex, m is the
number of edges of G, and |σ| denotes the num-
ber of chips in σ.

The sandpile group gives algebraic manifesta-
tions to many classical enumerations of spanning
trees. For example, Cayley’s formula nn−2 for the
number of spanning trees of the complete graph
Kn becomes

K(Kn) = (Zn)
n−2.

The formula mn−1nm−1 for the number of span-
ning trees of the complete bipartite graph be-
comes

K(Km,n) = Zmn × (Zm)n−2 × (Zn)
m−2.

The name “sandpile group” is due to Dhar, who
used the group to analyze the BTW sandpile
model.

A deep analogy between graphs and algebraic
curves can be traced back implicitly to a 1970
theorem of Raynaud, which relates the compo-
nent group of the Neron model of the Jacobian
of a curve to the Laplacian matrix of an associ-
ated graph. In this analogy, the sandpile group
of the graph plays a role analogous to the Picard
group of the curve. Many of the authors who
explored this analogy chose different names for
the sandpile group, including “group of compo-
nents” (Lorenzini), “Jacobian group” (Bacher et
al.) and “critical group” (Biggs). Recent work of
Baker and Norine carries the analogy further by
proving a Riemann-Roch theorem for graphs.

The odometer of a sandpile σ is the function
on vertices defined by

u(v) = # of times v topples

during the stabilization of σ.

The final stable configuration τ is given in terms
of σ and u by

τ = σ +∆u.

In particular, u obeys the inequalities

u ≥ 0,(1)

σ +∆u ≤ d− 1.(2)

One can show that the sandpile toppling rule im-
plies a kind of least action principle: the odome-
ter function is the pointwise minimum of all
integer-valued functions u satisfying (1) and (2).

The least action principle says that sandpiles
are “lazy” in a rather strong sense: even if we
allow “illegal” toppling sequences that result in
some vertices having a negative number of chips,
we cannot stabilize σ in fewer topplings than oc-
cur in the sandpile dynamics. What is more,
sandpiles are locally lazy: not only is the total
number of topplings minimized, but each vertex
does the minimum amount of work required of it
to produce a stable final configuration.

The least action principle characterizes the
odometer function as the solution to a type of
variational problem in partial differential equa-
tions called an obstacle problem. The problem
takes its name from an equivalent formulation in
which one is given a function called the obsta-
cle and asked to find the smallest superharmonic
function lying above it.

The obstacle problem for the sandpile odome-
ter has one extra wrinkle, which is the constraint
that u be integer valued. Relaxing this con-
straint yields the odometer function for a differ-
ent model called the divisible sandpile, in which
the discrete chips are replaced by a continu-
ous amount of mass which may be subdivided
arbitrarily finely during topplings. The divisi-
ble sandpile has dramatically different behavior:
starting with mass m at the origin in Z2, one ob-
tains a region Am of fully occupied sites, bordered
by a strip of partly filled sites. The set Am is very
nearly circular, reflecting the rotational symme-
try of the continuous Laplacian. Amazingly, the
anisotropy as well as the intricate patterns of Fig-
ure 1 arise entirely from the extra integrality con-
straint.

Two fundamental features of sandpiles in lat-
tices Zd remain unexplained by theorems. One is
scale invariance: large sandpiles look like scaled
up small sandpiles. The picture in Figure 1,
rescaled by a factor of 1/

√
n, appears to have

a limit as n → ∞. The limit is a function f on
the unit square [0, 1]2 which is locally constant
on an open dense subset. Each region where f
is constant corresponds to a patch on which the
sandpile configuration is periodic. The second
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unexplained feature is dimensional reduction: d-
dimensional slices of (d+1)-dimensional sandpiles
look like d-dimensional sandpiles, except in a re-
gion near the origin. Figure 3 compares a sand-
pile in Z2 with a 2-dimensional slice of a sandpile
in Z3.

As a way of measuring avalanches, Dhar con-
sidered the odometer function associated with the
operation of adding a single chip to a sandpile.
Starting from the stationary state and adding a
single chip at v, let uv(w) be the expected num-
ber of times w topples. When the system sta-
bilizes, it is again in the stationary state, so the
expected net change in height from topplings is
∆uv(w) = −δv,w (here δ is Kronecker’s delta). In
other words,

uv(w) = (−∆−1)v,w.

The entry (−∆−1)v,w of the inverse reduced
Laplacian matrix has a natural interpretation in
terms of random walks: it is the expected num-
ber of visits to w by a random walk on G started

at v and stopped when it first visits the sink. For
example, if G is the cube of side length n in Zd

(d ≥ 3) with sink at the boundary of the cube,
then this expectation has order |v−w|2−d for v, w
away from the boundary. Summing over w, we
see that the expected number of topplings di-
verges as n → ∞. The situation is even more
extreme for d = 2: the expected number of times
each individual site near v topples goes to infinity
with n.
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Figure 1. Stable sandpile of n = 106 chips in Z2. Color scheme: sites

colored blue have 3 chips, purple 2 chips, red 1 chip, white 0 chips.
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Figure 2. Identity element of the sandpile group of the 521 × 521

square grid graph, with sink at the boundary. Color scheme: sites

colored blue have 3 chips, green 2 chips, red 1 chip, orange 0 chips.



Figure 3. Top: A two-dimensional slice through the origin of the sand-

pile of n = 5 · 106 particles in Z3 on background height h = 4. Bottom:

The sandpile of m = 47465 particles in Z2 on background height h = 2.

Color scheme on left: sites colored blue have 5 particles, turquoise 4,

yellow 3, red 2, gray 1, white 0. On right: blue 3 particles, turquoise 2,

yellow 1, red 0.


