Solutions to Homework Set 21

Section 5.2

24. Show that if \(v \) is an eigenvector of \(A \) with eigenvalue \(\lambda \), then \(v \) is also an eigenvector of \(A_k \) for any positive integer \(k \).
 \[A^k v = A(A(...(Av)...)) = A(A(...(A(\lambda v)...))) = A(A(...(A(\lambda^k v)...))) = ... = \lambda^k v. \]
 So \(v \) is an eigenvector with eigenvalue \(\lambda^k \).

29. A square matrix \(B \) is nilpotent if \(B^k = 0 \) for some integer \(k > 1 \). Show that 0 is the only eigenvalue of a nilpotent matrix.
 Let \(\lambda \) be an eigenvalue of a nilpotent matrix \(B \), and let \(k \) be a positive integer such that \(B^k = 0 \). Then from Exercise 24 we see that \(\lambda^k \) is an eigenvalue of the zero matrix. I.e. there is a nonzero vector \(v \) s.t. \(0v = \lambda^k v \). This implies \(\lambda^k = 0 \) which implies \(\lambda = 0 \).

30. A square matrix \(C \) is idempotent if \(C^2 = C \). What are the possible eigenvalues of an idempotent matrix? Let \(\lambda \) be an eigenvalue of a idempotent matrix \(C \) and \(v \) be a corresponding eigenvector. Then \(\lambda v = C v = C^2 v = C(Cv) = C(\lambda v) = \lambda^2 v \Rightarrow \lambda^2 = \lambda \), so \(\lambda = 0 \) or 1. Both of these values are possible. For example the identity matrix is idempotent and has eigenvalue 1. The zero matrix is idempotent and has eigenvalue 0.

31. Suppose \(A \) is a 3x3 matrix with eigenvalues 0, 2, 4 and corresponding eigenvectors \(u_1, u_2, u_3 \).
 a) Find bases for \(NS(A) \) and \(CS(A) \) [Hint: \(y \in CS(A) \Rightarrow y = Ax \)]
 b) Solve \(Ax = u_2 + u_3 \).
 c) Show that \(Ax = u_1 \) has no solution.

Solution:

a) Suppose \(v \) is in the nullspace of \(A \). Then \(Av = 0 \), so either \(v = 0 \) or \(v \) is an eigenvector with eigenvalue 0, so it must be a nonzero multiple of \(u_1 \). We conclude that \(NS(A) = \text{span}(u_1) \).

For \(CS(A) \), follow the hint. We \(Au_2 = 2u_2, Au_3 = 4u_3 \), so \(u_2 \) and \(u_3 \) are in \(CS(A) \).

\[\text{dim}(CS(A)) = 3 - \text{dim}(NS(A)) = 3 - 1 = 2. \]

Let’s show \(u_2, u_3 \) are linearly independent. Suppose not, then \(3u_3 = au_2 \). Then \(2u_2 = Au_2 = Au_3 = au_3 = 4u_3 = 4u_2 \), which is not possible since \(u_2 \neq 0 \). We have, \(u_2, u_3 \in CS(A) \) and they are linearly independent, so they are a basis.

b) \(Ax = u_2 + u_3 = A(1/2u_2) + A(1/4u_3) \Leftrightarrow A(x - 1/2u_2 - 1/4u_3) = 0 \Leftrightarrow x - 1/2u_2 - 1/4u_3 \in NS(A) \Leftrightarrow \exists t. x - 1/2u_2 - 1/4u_3 = au_1(\text{by definition}) \Rightarrow x = 1/2u_2 + 1/4u_3 + au_1.

\[a \text{ and } b \text{ must be zero but then } u_1 \text{ must be zero, which is not the case.} \]
34. Find the eigenvalues and eigenvectors of \(A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix} \) and of \(B = \begin{bmatrix} a & b \\ b & -a \end{bmatrix} \).

\[
\det(\lambda I - B) = \det(\begin{bmatrix} \lambda - a & -b \\ -b & \lambda + a \end{bmatrix}) = (\lambda - a)(\lambda + a) - bb = \lambda^2 - a^2 - b^2 = \\
= (\lambda - \sqrt{a^2 + b^2})(\lambda + \sqrt{a^2 + b^2}), \text{ so the eigenvalues are } \pm \sqrt{a^2 + b^2}.
\]

To find the eigenvectors we need to find \(NS\left(\begin{bmatrix} \sqrt{a^2 + b^2} - a & -b \\ -b & \sqrt{a^2 + b^2} + a \end{bmatrix} \right) \) and

\[
NS\left(\begin{bmatrix} \sqrt{a^2 + b^2} - a & -b \\ -b & -\sqrt{a^2 + b^2} + a \end{bmatrix} \right).
\]

Let’s find the first nullspace. (assume \(b \) is not zero) Note that if we multiply the first row by \(\frac{\sqrt{a^2 + b^2} + a}{b} \) and add to the second row, we get the following matrix \(\begin{bmatrix} \sqrt{a^2 + b^2} - a & -b \\ 0 & 0 \end{bmatrix} \). Now \(v=(x,y) \) is in \(NS(\sqrt{a^2 + b^2}I - B) \) \(\iff \) \((\sqrt{a^2 + b^2} - a)x + (-b)y = 0 \) \(\iff \) \(y = \frac{\sqrt{a^2 + b^2} - a}{b}x \) so \(\text{NS}(\sqrt{a^2 + b^2}I - B) = \text{span}(\begin{bmatrix} b, \sqrt{a^2 + b^2} - a \end{bmatrix}^T) \). You can check this formula works in the case \(b=0 \) too.

Similarly \(\text{NS}(\sqrt{a^2 + b^2}I - B) = \text{span}(\begin{bmatrix} b, -\sqrt{a^2 + b^2} - a \end{bmatrix}^T) \).

For \(A \) just plug in \(a=3 \) and \(b=4 \) in the above.