Math 54 Spring 2005

Solutions to Homework Section 3.6 (continued)

February 16th, 2005

23. Find a basis for M_{mn}. What is $\text{dim } M_{mn}$?
For numbers i and j such that $1 \leq i \leq m$ and $1 \leq j \leq n$, let E_{ij} be the matrix whose i, j entry is 1 and all other entries are 0. The matrices E_{ij} span M_{mn} because any $m \times n$ matrix $A = (a_{ij})$ can be written as a linear combination:

$$A = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} E_{ij}.$$

It’s also easy to see that the E_{ij}’s are linearly independent: the right-hand side of the above equation represents a linear combination of the E_{ij}’s. If this combination is the zero matrix, that means A is the zero matrix, so all the a_{ij}’s are zero.

So the E_{ij}’s form a basis for M_{mn}. Since there are m possible choices for i and n possible choices for j, there are mn basis vectors in total, so $\text{dim } M_{mn} = mn$.

26. Let W be the subspace of $C[0,1]$ spanned by $S = \{ \sin^2 x, \cos^2 x, \cos 2x \}$.

[a.] Explain why S is not a basis for W.
Since $\cos 2x = \cos^2 x - \sin^2 x$, S is linearly dependent, and thus not a basis for W.

[b.] Find a basis for W.
Let $B = \{ \sin^2 x, \cos^2 x \}$. If $c_0 \sin^2 x + c_1 \cos^2 x = 0$ (the zero function in $C[0,1]$), then evaluating the equation above at $x = 0$, we find that $c_1 = 0$, leaving $c_0 \sin^2 x = 0$. Now, $\frac{\pi}{6} \in [0,1]$, so evaluating at $x = \frac{\pi}{6}$, we see that $\frac{\pi}{6} = 0$, from which we conclude that $c_0 = 0$. Thus the only way to have $c_0 \sin^2 x + c_1 \cos^2 x = 0$ is if $c_0 = c_1 = 0$. We conclude that B is linearly independent. Note that, $\cos 2x \in \text{Span}(V)$ (by a.), and of course, $\sin^2 x, \cos^2 x \in V \subseteq \text{Span}(V)$. Thus S is contained in $\text{Span}(B)$, which is a subspace of W, hence $\text{Span}(S) \subseteq \text{Span}(B)$, by Theorem 3.40(b). But now, $W = \text{Span}(S)$, so V spans all of W. Therefore, B is a linearly independent set which spans W, so B is a basis for W.

[c.] What is $\text{dim } W$?
The above basis for W has 2 elements, so $\text{dim } W = 2$.

28. Find the dimension of the nullspace of A. $A = \begin{bmatrix} 2 & 1 & -1 & 1 \\ 4 & -2 & -2 & 1 \\ 0 & -4 & 0 & -1 \end{bmatrix}$ This is row equivalent to

$$U = \begin{bmatrix} 2 & 1 & -1 & 1 \\ 0 & -4 & 0 & -1 \end{bmatrix}$$
Thus, $NSA = \{ (-\frac{3}{8} + \frac{3}{4} s + \frac{3}{4} t, -\frac{3}{4} s + \frac{3}{4} t, t, s) | \in \mathbf{R} \}$. A basis for NSA is $\{ (-\frac{3}{8}, -\frac{1}{4}, 0, 1), (\frac{1}{2}, 0, 1, 0) \}$. Since this basis has two elements, $\text{dim } NSA = 2$.

36. Any 3×3 skew-symmetric matrix A has the form

$$A = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} = a \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}.$$ (1)
Thus the matrices

\[
M_1 = \begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}, \quad M_2 = \begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{pmatrix}, \quad M_3 = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{pmatrix}
\]

span the space of skew-symmetric 3×3 matrices. To see that M_1, M_2 and M_3 are independent, notice that $aM_1 + bM_2 = cM_3$ equals the matrix on the left side of (1), which cannot be the zero matrix unless $a = b = c = 0$. So M_1, M_2, M_3 is a basis.

44. **Contract the columns of** $A = \begin{pmatrix} 0 & 2 & 3 & -6 \\ 0 & 0 & -3 & 6 \\ \end{pmatrix}$ **to a basis of** \mathbb{R}^2, **and expand the rows of** A **to a basis of** \mathbb{R}^4.

The second and third columns, $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -3 \end{pmatrix}$, form a basis of \mathbb{R}^2.

To expand the rows to a basis of \mathbb{R}^4, we would like to add two of the standard basis vectors ϵ_1, ϵ_2, ϵ_3, ϵ_4. Notice that the matrix

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 3 & 6 \\
0 & 0 & -3 & 6 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

is in row echelon form with a pivot in every column, so its rows are linearly independent. Using Theorem 3.64(d), we conclude that the rows of A together with ϵ_1 and ϵ_4 form a basis for \mathbb{R}^4.
