Chip-Firing and A Devil’s Staircase

Lionel Levine (MIT)

FPSAC, July 21, 2009
Talk Outline

- Mode locking in dynamical systems.
- Discrete: parallel chip-firing.
- Continuous: iteration of a circle map $S^1 \to S^1$.
- How the devil’s staircase arises.
- Short period attractors.
Mode Locking in Dynamical Systems

▶ “Weakly coupled oscillators tend to synchronize their motion, i.e. their modes of oscillation acquire \mathbb{Z}-linear dependencies.”

▶ Examples:
 ▶ Huygens’ clocks.
 ▶ Solar system (rotational periods of moons and planets).
 ▶ Biological oscillators: pacemaker cells, fireflies.
 ▶ …

▶ Parallel chip-firing: A combinatorial model of mode locking.
Parallel Chip-Firing on K_n

- At time t, each vertex $v \in [n]$ has $\sigma_t(v)$ chips.
- If $\sigma_t(v) \geq n$, the vertex v is unstable, and fires by sending one chip to every other vertex.
- **Parallel update rule**: At each time step, all unstable vertices fire simultaneously:

$$
\sigma_{t+1}(v) = \begin{cases}
\sigma_t(v) + u_t, & \text{if } \sigma_t(v) \leq n - 1 \\
\sigma_t(v) - n + u_t, & \text{if } \sigma_t(v) \geq n
\end{cases}
$$

where

$$u_t = \#\{v | \sigma_t(v) \geq n\}$$

is the number of unstable vertices at time t.

Lionel Levine Chip-Firing and A Devil’s Staircase
Parallel vs. Ordinary Chip-Firing

- In ordinary chip-firing (Björner-Lovász-Shor, Biggs, ...) one vertex is singled out as the sink. The sink is not allowed to fire.

- In parallel chip-firing, all vertices are allowed to fire.
 ⇒ The system may never reach a stable configuration.

- Instead of studying properties of the final configuration, we study properties of the dynamics.
The activity of a chip configuration

- Object of interest: The **activity** of σ is defined as

$$a(\sigma) = \lim_{t \to \infty} \frac{\alpha_t}{nt}$$

where

$$\alpha_t = u_0 + \ldots + u_{t-1}$$

is the total number of firings before time t.

- Since $0 \leq \alpha_t \leq nt$, we have $0 \leq a(\sigma) \leq 1$.
An Example on K_{10}

- Period 3, activity 1/3.

- Period 2, activity 1/2.
How Does Adding More Chips Affect the Activity?

<table>
<thead>
<tr>
<th>3</th>
<th>3</th>
<th>4</th>
<th>4</th>
<th>5</th>
<th>5</th>
<th>6</th>
<th>6</th>
<th>7</th>
<th>7</th>
<th></th>
<th>activity 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td></td>
<td>activity 0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td></td>
<td>activity 0</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td></td>
<td>activity 1/3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td></td>
<td>activity 1/2</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td></td>
<td>activity 1/2</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td></td>
<td>activity 2/3</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td></td>
<td>activity 1</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td></td>
<td>activity 1</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td></td>
<td>activity 1</td>
</tr>
</tbody>
</table>
An Example on K_{100}

Let $\sigma = (25 \ 25 \ 26 \ 26 \ \ldots \ 74 \ 74)$ on K_{100}.

$\left(a(\sigma + k) \right)_{k=0}^{100} = (0, 1/6, 1/5, 1/5, 1/4, 1/4, 1/4, 2/7, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 2/5, 2/5, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 2/3, 2/3, 2/3, 2/3, 2/3, 2/3, 2/3, 2/3, 2/3, 2/3, 5/7, 3/4, 3/4, 3/4, 3/4, 4/5, 4/5, 5/6, 1).
Let $\sigma = (250\ 250\ 251\ 251\ \ldots\ 749\ 749)$ on K_{1000}.
K_{1000} K_{10000}
Questions

- Why such small denominators?
- Is there a limiting behavior as $n \to \infty$?
The Large n Limit

- Sequence of stable chip configurations $(\sigma_n)_{n \geq 2}$ with σ_n defined on K_n.

- **Activity phase diagram** $s_n : [0, 1] \rightarrow [0, 1]$

 \[s_n(y) = a(\sigma_n + \lfloor ny \rfloor) \]

- Main hypothesis: \exists continuous $F : [0, 1] \rightarrow [0, 1]$, such that for all $0 \leq x \leq 1$

 \[\frac{1}{n} \# \{ v \in [n] | \sigma_n(v) < nx \} \rightarrow F(x) \]

 as $n \rightarrow \infty$.
Main Result: The Devil’s Staircase

-Theorem (LL, 2008): There is a continuous, nondecreasing function $s : [0, 1] \rightarrow [0, 1]$, depending on F, such that for each $y \in [0, 1]$

$$s_n(y) \rightarrow s(y) \quad \text{as } n \rightarrow \infty.$$

Moreover

- If $y \in [0, 1]$ is irrational, then $s^{-1}(y)$ is a point.
- For "most" choices of F, the fiber $s^{-1}(p/q)$ is an interval of positive length for each rational number $p/q \in [0, 1]$.

- So for most F, the limiting function s is a devil’s staircase: it is locally constant on an open dense subset of $[0, 1]$.

- Stay tuned for:
 - The construction of s.
 - What “most” means.
From Chip-Firing to Circle Map

- Call σ confined if
 - $\sigma(v) \leq 2n - 1$ for all vertices v of K_n;
 - $\max_v \sigma(v) - \min_v \sigma(v) \leq n - 1$.

- **Lemma**: If $a(\sigma_0) < 1$, then there is a time T such that σ_t is confined for all $t \geq T$.
Which Vertices Are Unstable At Time t?

Let

$$\alpha_t = u_0 + \ldots + u_{t-1}$$

be the total number of firings before time t.

Lemma: If σ is confined, then v is unstable at time t if and only if

$$\sigma(v) \equiv -j \pmod{n} \quad \text{for some } \alpha_{t-1} < j \leq \alpha_t.$$

Proof uses the fact that for any two vertices v, w, the difference

$$\sigma_t(v) - \sigma_t(w) \mod n$$

doesn’t depend on t.
A Recurrence For The Total Activity

- Get a three-term recurrence

\[\alpha_{t+1} = \alpha_t + \sum_{j=\alpha_{t-1}+1}^{\alpha_t} \phi(j) \]

where

\[\phi(j) = \# \{ v \mid \sigma(v) \equiv -j \pmod{n} \}. \]

- ... which telescopes to a two-term recurrence:

\[\alpha_{t+1} - \alpha_1 = \sum_{s=1}^{t} (\alpha_{s+1} - \alpha_s) \]

\[= \sum_{s=1}^{t} \sum_{j=\alpha_{t-1}+1}^{\alpha_t} \phi(j) = \sum_{j=1}^{\alpha_t} \phi(j). \]
Iterating A Function $\mathbb{N} \rightarrow \mathbb{N}$

- $\alpha_{t+1} = f(\alpha_t)$, where

$$f(k) = \alpha_1 + \sum_{j=1}^{k} \phi(j).$$

- Note that

$$f(k + n) = f(k) + \sum_{j=k+1}^{k+n} \phi(j)$$

$$= f(k) + \sum_{j=k+1}^{k+n} \# \{ v \mid \sigma(v) \equiv -j \pmod{n} \}$$

$$= f(k) + n.$$

- So $f - Id$ is periodic.
Circle Map

- Renormalizing and interpolating

\[g(x) = \frac{(1 - \{nx\})f(\lfloor nx \rfloor) + \{nx\}f(\lceil nx \rceil)}{n} \]

yields a continuous function $g : \mathbb{R} \to \mathbb{R}$ satisfying

\[g(x + 1) = g(x) + 1. \]

- So g descends to a circle map $S^1 \to S^1$ of degree 1.
The Poincaré Rotation Number of a Circle Map

- Suppose \(g : \mathbb{R} \rightarrow \mathbb{R} \) satisfies \(g(x + 1) = g(x) + 1 \).
- The rotation number of \(g \) is defined as the limit

\[
\rho(g) = \lim_{t \to \infty} \frac{g^t(x)}{t}.
\]

- If \(g \) is continuous and nondecreasing, then this limit exists and is independent of \(x \).
- If \(g \) has a fixed point, then \(\rho(g) = 0 \). What about the converse?
Periodic Points and Rotation Number

- More generally, for any rational number p/q

$$\rho(g) = \frac{p}{q} \quad \text{if and only if} \quad g^q - p \text{ has a fixed point.}$$
Chip-Firing Activity and Rotation Number

- We’ve described how to construct a circle map \(g \) from a chip configuration \(\sigma \).
- **Lemma**: \(a(\sigma) = \rho(g) \).
- **Proof**: By construction, \(\alpha_t/n = g^t(0) \), so

\[
a(\sigma) = \lim_{t \to \infty} \frac{\alpha_t}{nt} = \lim_{t \to \infty} \frac{g^t(0)}{t} = \rho(g).
\]
Devil’s Staircase Revisited

▶ Sequence of stable chip configurations \((\sigma_n)_{n \geq 2}\) with \(\sigma_n\) defined on \(K_n\).

▶ Recall: we assume there is a continuous function \(F : [0, 1] \rightarrow [0, 1]\), such that for all \(0 \leq x \leq 1\)

\[
\frac{1}{n} \# \{v \in [n] | \sigma_n(v) < nx\} \rightarrow F(x)
\]

as \(n \rightarrow \infty\).

▶ Extend \(F\) to all of \(\mathbb{R}\) by

\[
F(x + m) = F(x) + m, \quad m \in \mathbb{Z}, \ x \in [0, 1].
\]

(Since \(F(0) = 0\) and \(F(1) = 1\), this extension is continuous.)
Devil’s Staircase Revisited

- **Theorem:** For each $y \in [0, 1]$

 $$s_n(y) \to s(y) := p(R_y \circ G) \quad \text{as } n \to \infty,$$

 where $G(x) = -F(-x)$, and $R_y(x) = x + y$. Moreover,

 - s is continuous and nondecreasing.
 - If $y \in [0, 1]$ is irrational, then $s^{-1}(y)$ is a point.
 - If

 $$(\bar{R}_y \circ \bar{G})^q \neq Id : S^1 \to S^1$$

 for all $y \in S^1$ and all $q \in \mathbb{N}$, then the fiber $s^{-1}(p/q)$ is an interval of positive length for each rational number $p/q \in [0, 1]$.

Lionel Levine Chip-Firing and A Devil’s Staircase
Different choices of F give different staircases $s(y)$:
Properties of the Rotation Number

▶ **Continuity.** If $\sup |f_n - f| \to 0$, then $\rho(f_n) \to \rho(f)$.

$\Rightarrow s_n \to s$, and s is continuous.

▶ **Monotonicity.** If $f \leq g$, then $\rho(f) \leq \rho(g)$.

$\Rightarrow s$ is nondecreasing.

▶ **Instability of an irrational rotation number.** If $\rho(f) \notin \mathbb{Q}$, and $f_1 < f < f_2$, then $\rho(f_1) < \rho(f) < \rho(f_2)$.

\Rightarrow If $y \notin \mathbb{Q}$, then $s^{-1}(y)$ is a point.
Stability of a rational rotation number

- If \(\rho(f) = p/q \in \mathbb{Q} \), and
 \[
 \bar{f}^q \neq \text{Id} : S^1 \rightarrow S^1
 \]
 then for sufficiently small \(\varepsilon > 0 \), either

 \[
 \rho(g) = p/q \text{ whenever } f \leq g \leq f + \varepsilon,
 \]
 or

 \[
 \rho(g) = p/q \text{ whenever } f - \varepsilon \leq g \leq f.
 \]

\(\Rightarrow \) The fiber \(s^{-1}(p/q) \) is an interval of positive length.
Short Period Attractors

Lemma: If $a(\sigma) = p/q$ in lowest terms, then σ has eventual period q (i.e. $\sigma_{t+q} = \sigma_t$ for all sufficiently large t).

From the main theorem, it follows that for each $q \in \mathbb{N}$, at least a constant fraction $c_q n$ of the n states $\sigma_n, \sigma_n + 1, \ldots \sigma_n + n - 1$ have eventual period q.

Curiously, there is also an exclusively period-two window: if the total number of chips is strictly between $n^2 - n$ and n^2, then σ must have eventual period 2.
What About Other Graphs?

 - Started with $m = \lambda n^2$ chips, each at a uniform random vertex.
 - Ran simulations to find the expected activity as a function of λ.
 - They found a devil’s staircase!

- Is there a circle map hiding here somewhere??
Thank You!