Chapter 1 Topics

- Know the historical contexts of the specific ciphers discussed in Chapter 1, with a special emphasis on the cryptosystems covered in class.
- Be able to encrypt and decrypt plaintext using any of the cryptosystems covered in class.
- Be able to distinguish among the categories of ciphers: simple substitution, transposition, monoalphabetic substitution, polyalphabetic substitution, steganography, symmetric, asymmetric, etc.
- Be able to use function notation to evaluate a function from a table of values, a verbal (or written) description, or a formula. Be able to compute compositions and inverses.

Chapter 2 Topics

- Understand the meaning of the notations $a \equiv b \pmod{m}$, $a = b \text{MOD} m$, and $a = b \text{DIV} m$.
- Be able to solve (for the smallest non-negative x) congruences such as $x \equiv -543 \pmod{67}$, $8x \equiv 6 \pmod{21}$ and $11x + 5 \equiv 11 \pmod{20}$.
- Be able to solve (for the smallest non-negative a and b) systems of equations such as
 \[
 a + b \equiv 2 \pmod{36} \\
 6a + b \equiv 3 \pmod{36}.
 \]
- Be able to encipher and decipher using modular arithmetic with affine ciphers (including the special cases of a shift cipher and a decimation cipher).
- Be able to encipher and decipher using a substitution alphabet mixed via a keyword, and using a substitution mixed via a columnar transposition. (That is, a monoalphabetic substitution where the cipher alphabet is generated by a keyword or a keyword columnar transposition.)
- Be able to encipher and decipher using a columnar transposition, or a keyword columnar transposition.
- Be able to apply the theorem on the existence of multiplicative inverses, and find multiplicative inverses for small moduli.
- Be able to perform a small-scale cryptanalysis on a substitution or transposition using frequency analysis (frequency charts provided) and/or a few hints.
Selected Review Problems

1. Encipher \textit{GEOMETRY} using (a) a Caesar (+3) shift, (b) the Wheatstone-Playfair cipher on page 16, and (c) the ADFGVX cipher on page 21 (with the keyword \textit{MATH}).

2. Use the Vigenère cipher to (a) encipher \textit{GEOMETRY} using the keyword \textit{ANGLE}, and (b) decipher \textit{WUXAYERTH} using the keyword \textit{PUMPKIN}.

3. Let \(f(x) = (3x+5) \mod 26 \) and let \(g(x) = (5x+1) \mod 26 \). Determine (a) \(f^{-1}(x) \), and (b) \(f(g(x)) \).

4. Without actually determining the solution, explain why the congruence \(7x \equiv 1 \pmod{481} \) must have a solution.

5. Let \(P(x) \) be the function that assigns to a given letter in a string \(x \) the pair of letters determined by the following table:

\[
\begin{array}{cccccc}
V & W & X & Y & Z \\
V & E & S & P & Q & R \\
W & D & F & M & N & O \\
X & C & T & G & K & L \\
Y & B & U & V & H & Z \\
Z & A & W & X & Y & I
\end{array}
\]

(Regard any \(J \) in a string as an \(I \).) For example, \(P(\text{M}) = \text{WX} \) and \(P(\text{PHONE}) = \text{VX YY WZ WY VV} \). (a) What is the domain of the function \(P \)? (c) What is the range of the function \(P \)? (d) Is the function \(P \) one-to-one? (e) If \(P \) is one-to-one, describe its inverse \(P^{-1} \) and evaluate \(P^{-1}(\text{ZZ WY XW VV VZ WY VV XW}) \). If \(P \) is not one-to-one, give an example to show this.

6. The two ciphertexts

\begin{align*}
\text{HSZIR MTRHH LNVGR NVHNL IVWVN TGSZM TRERM T} \\
\text{SISEE RMIHI GHNST SEANA VAGOI MDNGN IRIMM OEDTG N}
\end{align*}

came from the same plaintexts. One of the ciphertexts came from a monoalphabetic substitution, and the other came from a simple columnar substitution. Explain which is which. Find the plaintext.

7. The string \textit{SUCCESS} was part of the plaintext that produced the ciphertext

\begin{align*}
\text{TSEKC OGEIC HUDEE NNCLU SICSS S}
\end{align*}

using a keyword columnar transposition. Find the plaintext.

8. (Bonus) Suppose that \(m \) and \(p \) are distinct prime numbers. (That is, \(m \) and \(p \) are each prime, and \(m \neq p \).) Suppose further that \(a \equiv b \pmod{m} \) and that \(a \equiv b \pmod{p} \). Prove that \(a \equiv b \pmod{mp} \).