An Introduction to the Mandelbrot and Julia Sets

Kathryn Lindsey
Math 6120
May 8, 2009

1 Introduction and Definitions

Definition 1. Let $p : \mathbb{C} \to \mathbb{C}$ be a polynomial of degree $d \geq 2$. The filled-in Julia Set K_p and the Julia Set J_p are

$$K_p = \{z \in \mathbb{C} | p^n(z) \not\to \infty\}, \quad J_p = \partial K_p$$

Filled Julia sets for polynomials $p(z) = z^2 - .5 - .5\sqrt{5}$, $p(z) = z^2 - 0.624 + .435i$, $p(z) = z^2 + .295 + .55i$

Definition 2. z_0 is a critical point of p if p is not a local homeomorphism at z_0. We will use Ω_p to denote the critical points of p.

Theorem 1.1. Let p be a polynomial of degree $d \geq 2$ and denote by Ω_p the set of critical points of p. If $\Omega_p \subset K_p$ then K_p is connected. If $\Omega_p \cap K_p = \emptyset$, then K_p is a Cantor set.

For polynomials $p(z) = z^2 + c$ this is a dichotomy, since they have only one critical point.

Proof. ∞ is an attracting fixed point, so for sufficiently large R the set $U_0 = \mathbb{C} - \bar{D}_R$ satisfies $U_0 \subset p^{-1}(U_0)$. Set $U_n = p^{-n}(U_0)$ for $n \geq 1$. Then $U_0 \subset U_1 \subset U_2 \subset ...$ and $\bigcup_{n=0}^{\infty} U_n = \mathbb{C} - K_p$.

1
Case $\Omega_p \subset K_p$. We will show that $\mathbb{C} - K_p$ is homeomorphic to an annulus, separating ∞ from K_p. Since $\Omega_p \cap U_n = \emptyset$ the map $p : U_n \to U_{n-1}$ is a local homeomorphism, and is proper (since U_n is compact), i.e. it is a covering map of degree d. Since U_0 is homeomorphic to an annulus, all components of each U_n are also homeomorphic to an annulus. $U_{n-1} \subset U_n$, so U_{n-1} is contained in one of the components of U_n; this component of U_n covers U_{n-1} with degree d. Hence it is the only component of U_n (since $U_n = p^{-1}(U_{n-1})$, and so all the U_n are connected. Thus the union $\bigcup_{n=0}^{\infty} U_n$ is connected and is homeomorphic to an annulus, separating ∞ from K_p. So K_p is connected.

Case $\Omega \cap K_p = \emptyset$. Since $|\Omega_p|$ is finite for sufficiently large m, $p^m(\Omega_p) \subset U_0$, or equivalently $\Omega_p \cap p^{-m}(\overline{D_r}) = \emptyset$. Let $V = p^{-m}(D_R)$ and $W = p^{-m+1}(D_r)$. Then $V \subset W$ and $p : V \to W$ is a covering map. Since V is relatively compact in W, there exists $C > 1$ so that $|(z, \xi)|_V \geq C|(z, \xi)|_W$ for all $(z, \xi) \in TV$. $p : V \to W$ is a covering map, so it is an infinitesimal isometry. Hence

$$|(p(z), p'(z)\xi)_W = (z, \xi)|_V \geq C|(z, \xi)|_W.$$

Let M be the maximum diameter of the components of V with respect to the hyperbolic metric on W. Then the inequality above implies that the maximum diameter of a component of $p^{-n}(V)$ is MC^{-n}. As $K_p = \cap p^{-n}(V)$, this implies that the components of K_p are points. K_p is compact and perfect, so it is a Cantor set.

Definition 3. Let K_c be the filled Julia set corresponding to the polynomial $p_c(z) = z^2 + c$. The **Mandelbrot set** M is the set

$$M = \{c \in \mathbb{C} : 0 \in K_c\} = \{c \in \mathbb{C} : K_c \text{ is connected}\}.$$
The structure of the Mandelbrot set is incredibly complicated. There are a number of short videos available online which zoom into various areas of the Mandelbrot set. The most impressive one that I came across zooms in by a factor of 10^{333} (wow!!!) and is available at http://www.youtube.com/watch?v=x6DD1k4BAUg.

2 Background Results

Theorem 2.1. (Uniformization Theorem) Any simply connected Riemann surface is conformally isomorphic to exactly one of \mathbb{C}, the open disk \mathbb{D}, or the Riemann sphere $\hat{\mathbb{C}}$.

Theorem 2.2. (Uniformization Theorem for Arbitrary Riemann Surfaces) Every Riemann surface S is conformally isomorphic to a quotient of the form \tilde{S}/Γ, where \tilde{S} is a simply connected Riemann surface and $\Gamma \cong \pi_1(S)$ is a group of conformal automorphisms which acts freely and properly discontinuously on \tilde{S}.

Definition 4. A hyperbolic Riemann surface is one whose universal cover is conformally isomorphic to \mathbb{D}.

The Poincaré metric on \mathbb{D} is the unique Riemannian metric (up to multiplication by a constant) on \mathbb{D} that is invariant under all conformal isomorphisms of \mathbb{D}. The Poincaré metric on \mathbb{D} is complete and has the property that any two points are connected by a unique geodesic.

The Poincaré metric on a hyperbolic surface S is obtained by “projecting” down the Poincaré metric on \mathbb{D}. That is, the universal cover \tilde{S} is conformally isomorphic to \mathbb{D}, so \tilde{S} has a Poincaré metric, which is invariant under deck transformations. Thus, the Poincaré metric on S is the unique Riemannian metric on S so that the projection $\tilde{S} \to S$ is a local isometry.

Theorem 2.3. (Schwarz Lemma) If $f : \mathbb{D} \to \mathbb{D}$ is a holomorphic map with $f(0) = 0$, then $|f'(0)| \leq 1$. If $|f'(0)| = 1$ then f is a rotation about the origin of the form $f(z) = f'(0) \cdot z$. If $|f'(0)| < 1$ then $|f(z)| \leq |z|$ for all $z \neq 0$ and f is not a conformal automorphism.

Proof. Let $g(z) = f(z)/z$ (with $g(0) = 0$). By the maximum modulus principle, $|g(z)| \leq 1/r$ for all z in the disk $|z| \leq r$. Letting $r \to 1$ gives $|g(z)| \leq 1$ for all $z \in \mathbb{D}$. By the maximum modulus principle, if for some z in the interior of the disk, $|g(z)| = 1$ implies g is constant.
Otherwise $|g(z)| < 1$ on D; since the composition of two maps with this property must also be contracting, f cannot be a conformal automorphism.

An easy generalization of the Schwarz Lemma yields a analogous result for hyperbolic surfaces.

Theorem 2.4. (Pick Theorem) If $f : S \rightarrow S'$ is a holomorphic map between hyperbolic surfaces, then exactly one of the following three statements holds:

1. f is a conformal isomorphism from S onto S', and it maps S with its Poincare metric isometrically onto S' with its Poincare metric.

2. f is a covering map but is not one-to-one. In this case it is locally but not globally a Poincare isometry. Every smooth path $P : [0, 1] \rightarrow S$ of arclength l in S maps to a smooth path $f \circ P$ of the same length l in S', and it follows that $\text{dist}_S(f(p), f(q)) \leq \text{dist}_S(p, q)$ for every $p, q \in S$.

3. f strictly decreases all nonzero distances. In fact, for any compact set $K \subset S$ there is a constant $C_K < 1$ so that $\text{dist}_{S'}(f(p), f(q)) \leq C_K \text{dist}(p, q)$ for every $p, q \in K$, so that every smooth path in K with arclength l (using the Poincare metric for S) maps to a path of poincare arclength $\leq C_K l$ in S'.

Theorem 2.5. Suppose X and Y are Riemann surfaces and $f : X \rightarrow Y$ is a proper non-constant holomorphic map. Then there exists $n \in \mathbb{N}$ such that f takes every value $c \in Y$, counting multiplicies, n times.

A proper non-constant holomorphic maps is called an n-sheeted holomorphic covering map, where n is as above.

3 Böttcher coordinates on $\mathbb{C} - K_p$

Proposition 3.1. Let $f(z) = z^k(1 + g(z))$ be an analytic mapping on $\hat{\mathbb{C}}$ with $f(\infty) = \infty$, $k \geq 2$ and $|g(z)| \in O(1/|z|)$. Then there exists a neighborhood U of ∞ and an analytic mapping $\varphi : U \rightarrow \mathbb{C}$ with $(\varphi(z))^k = \varphi(f(z))$.

Proof. The idea is to “define" $\varphi(z) = \lim_{n \to \infty} (f^n(z))^{1/k^n}$ – however, the problem is that we have to specify which k^nth root is being considered. After working to guarantee that this
"definition" is meaningful and well-defined, it will yield the desired conjugacy between f and z^k:

$$(\varphi(z))^k = \left(\lim_{n \to \infty} (f^n(z))^{1/k_n} \right)^k = \lim_{n \to \infty} \left((f^{n+1}(z))^{1/k_n+1} \right)^k$$

$$= \lim_{n \to \infty} (f^{n+1}(z))^{k/k_n+1} = \lim_{n \to \infty} (f^{n+1}(z))^{1/k_n} = \varphi(f(z))$$

The general term of this product is

$$\frac{(f^m(z))^{1/k_m}}{(f^{m-1}(z))^{1/k_{m-1}}} = \frac{((f^{m-1}(z))^k(1 + g(f^{m-1}(z))))^{1/k_m}}{(f^{m-1}(z))^{1/k_{m-1}}}$$

$$= (1 + g(f^{m-1}(z)))^{1/k_m}$$

So we want to show that there exists $r > 0$ so that $|z| \geq r$ implies $|g(f^{m-1}(z))| < 1$ for all m. Pick $r_1 > 0$ and $C > 0$ so that $|g(z)| < \frac{C}{|z|}$ for $|z| \geq r_1$. Let r_2 be the greatest positive root of $x^{k+1}(1 + Cx) = 1$. Set $r = \max(r_1, r_2, \frac{1}{2C})$. Then for $|z| \geq r$,

$$|f(z)| = |z|^k |1 + g(z)| \geq |z|^{r-1}|1 + Cr| \geq |z|,$$

implying $|f^m(z)| \geq |z|$ for all m. Hence

$$|g(f^{m-1}(z))| \leq \frac{C}{|f^{m-1}(z)|} \leq \frac{C}{2C} = \frac{1}{2},$$

and so the expression $(f^n(z))^{1/k_n}$ is well-defined for $|z| \geq r$.

It remains to show that the limit $\lim_{n \to \infty} (f^n(z))^{1/k_n}$ converges. The maximum value of $|\ln(1 + w)|$ for $|w| \leq 1/2$ is $\ln(2)$ and is achieved at $w = -1/2$. Then

$$|\ln |1 + g(f^{m-1}(z))|^{1/k_n}| \leq \frac{1}{k_n} |\ln |1 + g(f^{m-1}(z))|| \leq \frac{\ln 2}{k_n},$$

and the numbers $\frac{\ln 2}{k_n}$ form a convergent series, so the limit converges. \square

Although the map φ as constructed in Proposition 3.1 helps us to understand the dynamics on a small neighborhood of a superattracting fixed point, in order to study Julia sets we want a map defined on all of $\mathbb{C} - K_p$. However, Böttcher coordinates do not in general extend to the entire basin of attraction of a superattracting fixed point. Green’s function G,

defined in the proposition below, does.

Proposition 3.2. Let \(f(z) = z^k(1 + g(z)) \) be an analytic mapping on \(\hat{\mathbb{C}} \) with \(f(\infty) = \infty \), \(k \geq 2 \) and \(|g(z)| \in O(1/|z|) \) near \(\infty \). Let \(A_\infty \) be the basin of attraction of \(\infty \) and let \(Z = \{ z : f^n(z) = \infty \text{ for some } n \in \mathbb{N} \} \). Then the sequence of functions \(G_n : A_\infty \to [-\infty, \infty) \) defined by

\[
G_n(z) = \frac{1}{k^n} \ln \left| \frac{1}{f^n(z)} \right|
\]

converges uniformly on compact subset of \(A_\infty \), with poles on \(Z \), and the limit \(G \) satisfies \(G(f(z)) = kG(z) \).

Proof. On any compact set \(X \), \(|f^n(z)|^{1/k^n} \) converges uniformly, which implies \(|\frac{1}{f^n(z)}|^{1/k^n} \) converges uniformly, and hence \(-n \ln |\frac{1}{f^n(z)}| = G_n(z) \) converges uniformly. \(G \) converges on \(A_\infty \) because all points in \(A_\infty \) eventually enter \(U \). \(G_n(f(z)) = k^{-n} \ln |\frac{1}{f^{n+1}(z)}| = k \cdot k^{-(n+1)} \ln |\frac{1}{f^{n+1}(z)}| = kG_{n+1}(z) \). \(\square \)

We can now use Green’s function to extend \(\varphi \).

Proposition 3.3. The map \(\varphi \) extends to an analytic isomorphism from \(U_{\rho_0} \) to \(\{ z : |z| > e^{\rho_0} \} \). In particular, if \(A_\infty \) contains no critical point of \(f \) other than \(\infty \), the map \(\varphi \) is a conformal map from the immediate basin of \(0 \) to \(\mathbb{C} - \mathbb{D} \).

Proof. There exists \(n \in \mathbb{N} \) sufficiently large so that \(U_{\rho_0}^n \) is contained in the domain of definition of \(\varphi \). The restriction \(f : U_{\rho_0}^{n-1} \to U_{\rho_0}^n \) is a covering map of degree \(k \) ramified only at \(\infty \), and the map \(z \mapsto z^k \) as a map from \(\hat{\mathbb{C}} - D_{\rho_0}^{n-1} \) to \(\hat{\mathbb{C}} - D_{\rho_0}^n \) is also a covering map ramified only at \(\infty \) (because \(U_{\rho_0}^{n-1} \cap \Omega_p = \emptyset \)). There is only one such ramified covering space (up to automorphisms). Hence there are precisely \(k \) different maps \(g_i : U_{\rho_0}^{n-1} \to D_{\rho_0}^{n-1} \) (the \(k \) lifts of \(\varphi \)) such that \(\varphi(f(z)) = (g_i(z))^k \). These \(k \) lifts of \(\varphi \) different by postmultiplication by a \(k \)th root of unity. But precisely one of these \(g_i \) coincides with \(\varphi \) on \(U_{\rho_0}^n \). This map is the analytic extension of \(\varphi \) to \(U_{\rho_0}^{n-1} \). Iterating this process, we can extend \(\varphi \) successively to \(U_{\rho_0}^{n-1} \subset U_{\rho_0}^{n-2} \subset \ldots \subset U_{\rho_0} \). \(\square \)

The figure below illustrates the two maps \(g_i \) that arise in the proof of proposition 3.3 at an iteration of the extension of \(\varphi \) for the case \(f(z) = z^2 + c \) (the picture is taken from [Dev89]; here \(\phi_c \) is used instead of \(\varphi \)).
Thus far, we have succeeded in defining φ on $\mathbb{C} - K_p$, but we have not said anything about the behavior of external rays as they approach the boundary of K_p. Do external rays actually land on the Julia set? Define $\psi = \varphi^{-1}$, $\psi : \mathbb{C} - \mathbb{D} \rightarrow \mathbb{C} - K_p$. Can we extend ψ to S^1?

If we could extend ψ to S^1, one immediate consequence would be that K_p is locally connected (since the continuous image of a locally connected set is locally connected).

The following theorem answers this question for certain cases. Only the proof of the first case (the hyperbolic case) is given here.

Theorem 3.1. Let p be a polynomial of degree $d \geq 2$ such that every critical point of p is either

1. attracted to an attracting cycle (not infinity),
2. has a finite orbit containing a repelling cycle, or
3. is attracted to a parabolic cycle.

Then ψ_p extends to S^1.

Proof. (Case 1) Let Z be the set of attracting cycles. Let V_0 be a neighborhood of Z such that $p(V_0)$ is relatively compact in V_0. Define $V_n = p^{-n}(V_0)$ where $n \in \mathbb{N}$ is the smallest integer such that $\Omega_p \subset V_n$. Fix $R > 0$ sufficiently large that $p^{-1}(U)$ is a relatively compact subset of U, where

$$U = \mathbb{C} - (\mathbb{C} - K_p : |\varphi_p(z)| \geq R).$$
Let U' denote $p^{-1}(U)$. $p : U' \to U$ is a covering map, and so for $(z, w) \in TU'$,

$$|(z, w)|_U = |(p(z), p'(z) \cdot w)|_U.$$

As U' is a proper subset of U, $|(z, w)|_U < |(z, w)|_{U'}$ for all $(z, w) \in TU'$. Since $\frac{|(z,w)|_U}{|(z,w)|_{U'}}$ is continuous on $\{(z, w) \in TU' : w \neq 0\}$ and U' is relatively compact in U, there exists $C < 1$ such that

$$|(z, w)|_U \leq C|(z, w)|_{U'}$$

for all $(z, w) \in TU'$, $w \neq 0$. Thus for all $(z, w) \in TU'$ with $w \neq 0$

$$|(z, w)|_U \leq C|(z, w)|_{U'} = C|p(z), p'(z)w|_U.$$

Denote by $\alpha_{n,t}$ the arc that is the image of the map

$$\rho \rightarrow \psi_p(\rho e^{2\pi it}), \quad R^{1/d_n+1} \leq \rho \leq R^{1/d_n}$$

and by $l_{n,t}$ the length of $\alpha_{n,t}$. Write $l_n = \sup_{t \in \mathbb{R}/\mathbb{Z}} l_{n,t}$. Since $\psi_p(z^d) = p(\psi_p(z))$, we have $p(\alpha_{n,t}) = \alpha_{n-1,t}$. Hence $l_{n,t} \leq C l_{n-1,t}$ for all t, and so $l_n \leq C l_{n-1}$. Thus the l_n form a convergent series (by comparison to the geometric series C^{-n}). It follows that the family of mappings $\beta_{p} : \mathbb{R}/\mathbb{Z} \to U$ given by $\beta_{p}(t) = \psi_p(\rho e^{2\pi it})$ converges uniformly as $\rho \searrow 1$.

4 The Mandelbrot Set is Connected

In this section we consider polynomials of the form $p(z) = z^2 + c$.

We have seen that there exists an analytic isomorphism $\varphi_c : C - K_c \to C - \overline{D}$ (proposition 3.3). If $c \not\in M$, then $c \in C - K_c$, and so we can define a map $\Phi : \mathbb{C} - M \to \mathbb{C}$ by

$$\Phi(c) = \varphi_c(c).$$

Theorem 4.1. The map Φ is an analytic isomorphism $\mathbb{C} - M \to \mathbb{C} - \overline{D}$. In particular, the Mandelbrot set M is connected.

Proof. Φ is the composition of the analytic mappings $c \mapsto (c, c)$ and $(z, c) \mapsto \varphi_c(z)$, so Φ is analytic.
We now show that Φ is proper.

$$-G_c(z) = \lim_{n \to \infty} 2^{-n} \ln |P^n_c(z)| = \ln |z| + \sum_{n=1}^{\infty} \ln \left| 1 + \frac{c}{P^n_c(z)} \right|.$$

$$\ln |\Phi(c)| = -G_c(c) = \ln |c| + \sum_{n=1}^{\infty} 2^{-n} \ln \left| 1 + \frac{c}{P^n_c(c)} \right|.$$

If $|c| > 2$, then $\left| 1 + \frac{c}{P^n_c(c)} \right| \leq 2$, so $-G_c(c) - \ln |c|$ is bounded, and $c \mapsto |G_c(c)|$ is a proper map.

$c \mapsto |G_c(c)|$ is proper implies immediately that $\Phi : C - M \to \mathbb{C} - \mathbb{D}$ is proper, because for any compact set in $\mathbb{C} - \mathbb{D}$ is a closed subset of an annulus $\{ z \in C : r_1 \leq |z| \leq r_2 \}$ for some $1 < r_1 < r_2 < \infty$, and Φ^{-1} of such an annulus is compact:

$$\{ c \in \mathbb{C} : r_1 \leq |\Phi(c)| \leq r_2 \} = \{ c \in \mathbb{C} : \ln r_1 \leq |G_c(c)| \leq \ln r_2 \},$$

which is compact.

Next, Φ is surjective: Φ proper implies its image is closed, and all non-constant analytic mappings are open, so the image is both closed and open in $\mathbb{C} - \mathbb{D}$. Hence Φ is surjective.

We now show Φ is a bijection. $\ln |\Phi(c)| = -G_c(c) = \ln |c| + \sum_{n=1}^{\infty} 2^{-n} \ln \left| 1 + \frac{c}{P^n_c(c)} \right|$, and $-G(c) - \ln |c|$ is bounded, in particular bounded near ∞, so $\Phi(c)/c$ is bounded near ∞. Hence $\Phi(c)/c$ is bounded near ∞, which implies Φ has a simple pole at ∞. Thus Φ extends to an analytic map $\bar{C} - M \to \bar{C} - \bar{D}$, and the only inverse image of ∞ is ∞, which local degree 1. Hence Φ has degree 1 (by proposition 2.5), i.e. Φ is a bijection.
References

