INSTRUCTIONS — PLEASE READ THIS NOW

- This exam consists of three problems with several parts each.
- You should include a complete logical justification, written in grammatically correct mathematical language.
- Write your name right now.
- Look over your test packet as soon as the exam begins. If you find any missing pages or problems please ask for another test booklet.
- You have 50 minutes to complete this exam. You may leave early, but if you finish within the last 10 minutes, please remain in your seat.
- This is a closed book exam. You are NOT allowed to use a calculator, cell phone, or any other electronic device (not even as a time keeping device).
- Academic integrity is expected of every Cornell University student at all times, whether in the presence or absence of a member of the faculty. Understanding this, I declare I shall not give, use, or receive unauthorized aid in this examination. I will not discuss this exam with other students until both sections have taken the exam.

Please sign below to indicate that you have read and agree to these instructions.

Signature of Student
Problem 1. Let V denotes the vector space $\text{Fun}(\mathbb{Z}/9\mathbb{Z}, \mathbb{R})$ of functions from the set

$$
\mathbb{Z}/9\mathbb{Z} = \{0, 1, \ldots, 8\}.
$$

On the set $\mathbb{Z}/9\mathbb{Z}$ we have addition and multiplication mod 9. Consider the subspaces of V

$$
U_1 = \{ f(x) \mid f(x) = f(x + 3) \} \quad \text{and} \quad U_2 = \{ f(x) \mid f(x) = f(-x) \}.
$$

Construct basises of the subspaces listed bellow

a) U_1

b) U_2

c) $U_1 \cap U_2$

and find their dimensions. Can you find the dimension of $U_1 + U_2$?
This page is for additional work for problem 1.
Problem 2. Consider the linear transformation $S : P_2(\mathbb{R}) \rightarrow P_2(\mathbb{R})$ defined by
\[S(f)(x) = f(x + 1) \]
for any polynomial $f(x)$. Write down the matrix of S in the following bases
a) $E = \{1, x, x^2\}$;
b) $F = \{\frac{1}{2}(x - 2)(x - 3), -(x - 1)(x - 3), \frac{1}{2}(x - 1)(x - 2)\}$.
You can reduce the computations in part b) by noticing that the basis F consists of Lagrange polynomials.

Note: Here $P_2(\mathbb{R})$ denotes the space of polynomials of degree at most 2 with real coefficients.
This page is for additional work for problem 2.
Problem 3. Let $T : V \to W$ be a linear transformation. In class we discussed the induced maps

$$T_* : \text{Subsets}(V) \to \text{Subsets}(W) \quad \text{and} \quad T^* : \text{Subsets}(W) \to \text{Subsets}(V)$$

and showed that for any subset $E \subset V$ we have

$$T_*(\text{span}(E)) = \text{span}(T_*(E)).$$

Let F be a nonempty subset of W, consider the two subspaces

$$T^*(\text{span}(F)) \quad \text{and} \quad \text{span}(T^*(F)).$$

a) Show that one is a subspace of the other.
b) Give an example where these subspaces are different.
c) Find some condition for T which implies that these subspaces are the same for any nonempty $F \subseteq W$.

Note: Here $\text{span}(E)$ denote the subspace spanned by a set a vectors, the textbook uses the notation $\mathcal{L}(E)$. If you want you can assume that the vector spaces V, W are finite dimensional and the set F is finite.
This page is for additional work for problem 3.
This page is for additional work for problem 3.