Here is a fairly formal proof of a lemma needed for the Four Vertex Theorem, filling in details I left out during class on Thursday.

Formally a line is the range of a curve $\alpha : \mathbb{R} \to \mathbb{R}^n$ such that each coordinate function $\alpha_i(t)$ is of the form $v_it + x_i$ where $x = (x_1, \ldots, x_n)$ is a point in \mathbb{R}^n and $v = (v_1, \ldots, v_n)$ is a point in \mathbb{R}^n other than the origin. If P, Q, and R are all on a line and $Q = \lambda P + (1 - \lambda)R$ for some λ in $[0, 1]$, then we say Q is between P and R. The trace of any line in \mathbb{R}^2 has the form $\{(x, y) \in \mathbb{R}^2 : Ax + By + C = 0\}$. Define $L(x, y) = Ax + By + C$. The two sides of the line are the two sets

$$\{(x, y) \in \mathbb{R}^2 : L(x, y) \geq 0\}$$

$$\{(x, y) \in \mathbb{R}^2 : L(x, y) \leq 0\}.$$

Lemma. Suppose that $\alpha : [0, l] \to \mathbb{R}^2$ is a convex simple closed plane curve. Either α contains a line segment or else any line meets the trace of α in at most two points.

Proof. Suppose that $0 \leq s_0 < s_1 < s_2 \leq l$ are such that $\alpha(s_0)$, $\alpha(s_1)$, and $\alpha(s_2)$ are collinear and distinct. By reparametrizing if necessary, we may assume that $\alpha(s_1)$ is between $\alpha(s_0)$ and $\alpha(s_2)$ (i.e. if necessary, first replace α by $\bar{\alpha}(s) = \alpha(s + s_1)$ if $0 \leq s \leq l - s_1$ and $\bar{\alpha}(s) = \alpha(s + s_1 - l)$ if $l - s_1 \leq s \leq l$). Define $P = \alpha(s_0)$, $Q = \alpha(s_1)$, and $R = \alpha(s_2)$. If either of the arcs on α between s_0 and s_1 or between s_1 and s_2 are line segments, we are done. Observe that both of these arcs are on the same side of \overline{PR}. Let A, B, C be such that $Ax + By + C = 0$ defines \overline{PR} and such that it is nonnegative on the trace of α between s_0 and s_2. Let M_0 and M_1 be the maximums of L on the arcs $[s_0, s_1]$ and $[s_1, s_2]$ respectively, realized at the parameters $t_0 \in [s_0, s_1]$ and t_1 in $[s_1, s_2]$. Let M be such that $0 < M < \min(M_1, M_2)$. By the intermediate value theorem, there are u_0 and u_1 such that $s_0 < u_0 < t_0$ and $t_1 < u_1 < s_2$ and $L(\alpha(u_i)) = M$. Now the line $Ax + By + C - M = 0$ contains $\alpha(u_0)$ and $\alpha(u_1)$ and t_0 and s_1 are in $[u_0, u_1]$ and are such that $\alpha(t_0)$ and $\alpha(s_1)$ are on opposite sides of $Ax + By + C - M = 0$, contradicting our assumption that α was convex. \qed