Here’s one way to make the idea of fractional dimension rigorous: Let $d \geq 0$ be real. The d-dimensional Hausdorff measure is defined as follows: For $S \subset \mathbb{R}^n$ and $\delta > 0$, say that a collection of balls $\{B_i \mid i \in \mathbb{N}\}$ is a δ–cover of S if $S \subset \bigcup B_i$, and every ball in B_i has radius at most δ. Define

$$
\mathcal{H}_\delta^d(S) = \inf_{\{B_i \mid i \in \mathbb{N}\}} \sum_{i \in \mathbb{N}} \left(\text{radius}(B_i) \right)^d,
$$

where the infimum is taken over all δ–covers of S. And define the d–dimensional Hausdorff measure $\mathcal{H}^d(S)$ to be the limit (if it exists) $\lim_{\delta \to 0} \mathcal{H}_\delta^d(S)$. If $\lim_{\delta \to 0} \mathcal{H}_\delta^d(S) = \infty$, then say $\mathcal{H}^d(S) = \infty$.

The second problem below gives that, for a set S which has $\mathcal{H}^d(S)$ well-defined for all d, there is a critical Hausdorff dimension $\dim_H(S)$, so that $\mathcal{H}^d(S) = 0$ for $d > \dim_H(S)$, and $\mathcal{H}^d(S) = \infty$ for $d < \dim_H(S)$.

Problem 1: Assuming that d is an integer, show that a set of d–dimensional volume zero has d–dimensional Hausdorff measure zero.

Problem 2: Show that if $a > b$, and if $\mathcal{H}^a(S)$ and $\mathcal{H}^b(S)$ are both defined, then $\mathcal{H}^a(S) \leq \mathcal{H}^b(S)$, and at most one of the two is nonzero and finite.