Table of Contents

PREFACE xi

CHAPTER 0 Preliminaries

0.0 Introduction 1
0.1 Reading Mathematics 1
0.2 Quantifiers and Negation 4
0.3 Set Theory 6
0.4 Functions 9
0.5 Real Numbers 17
0.6 Infinite Sets 22
0.7 Complex Numbers 26

CHAPTER 1 Vectors, Matrices, and Derivatives

1.0 Introduction 33
1.1 Introducing the Actors: Points and Vectors 34
1.2 Introducing the Actors: Matrices 43
1.3 A Matrix as a Transformation 59
1.4 The Geometry of \(\mathbb{R}^n \) 71
1.5 Limits and Continuity 89
1.6 Four Big Theorems 110
1.7 Differential Calculus 125
1.8 Rules for Computing Derivatives 146
1.9 Mean Value Theorem and Criteria for Differentiability 154
1.10 Review Exercises for Chapter 1 162

CHAPTER 2 Solving Equations

2.0 Introduction 169
2.1 The Main Algorithm: Row Reduction 170
2.2 Solving Equations Using Row Reduction 178
2.3 Matrix Inverses and Elementary Matrices 186
2.4 Linear Combinations, Span, and Linear Independence 192
2.5 Kernels, Images, and the Dimension Formula

2.6 An Introduction to Abstract Vector Spaces

2.7 Newton’s Method

2.8 Superconvergence

2.9 The Inverse and Implicit Function Theorems

2.10 Review Exercises for Chapter 2

CHAPTER 3 Higher Partial Derivatives, Quadratic Forms, and Manifolds

3.0 Introduction

3.1 Manifolds

3.2 Tangent Spaces

3.3 Taylor Polynomials in Several Variables

3.4 Rules for Computing Taylor Polynomials

3.5 Quadratic Forms

3.6 Classifying Critical Points of Functions

3.7 Constrained Critical Points and Lagrange Multipliers

3.8 Geometry of Curves and Surfaces

3.9 Review Exercises for Chapter 3

CHAPTER 4 Integration

4.0 Introduction

4.1 Defining the Integral

4.2 Probability and Centers of Gravity

4.3 What Functions Can Be Integrated?

4.4 Integration and Measure Zero (Optional)

4.5 Fubini’s Theorem and Iterated Integrals

4.6 Numerical Methods of Integration

4.7 Other Pavings

4.8 Determinants

4.9 Volumes and Determinants

4.10 The Change of Variables Formula

4.11 Lebesgue Integrals

4.12 Review Exercises for Chapter 4

CHAPTER 5 Volumes of Manifolds

5.0 Introduction

5.1 Parallelograms and their Volumes

5.2 Parametrizations

5.3 Computing Volumes of Manifolds
CHAPTER 6 Forms and Vector Calculus

6.0 Introduction 557
6.1 Forms on \(\mathbb{R}^n \) 558
6.2 Integrating Form Fields over Parametrized Domains 574
6.3 Orientation of Manifolds 579
6.4 Integrating Forms over Oriented Manifolds 590
6.5 Forms and Vector Calculus 602
6.6 Boundary Orientation 614
6.7 The Exterior Derivative 627
6.8 The Exterior Derivative in the Language of Vector Calculus 635
6.9 The Generalized Stokes’s Theorem 642
6.10 The Integral Theorems of Vector Calculus 651
6.11 Potentials 658
6.12 Review Exercises for Chapter 6 664

APPENDIX A: Some Harder Proofs

A.0 Introduction 669
A.1 Arithmetic of Real Numbers 669
A.2 Cubic and Quartic Equations 673
A.3 Two Extra Results in Topology 679
A.4 Proof of the Chain Rule 680
A.5 Proof of Kantorovich’s theorem 682
A.6 Proof of Lemma 2.8.5 (Superconvergence) 688
A.7 Proof of Differentiability of the Inverse Function 690
A.8 Proof of the Implicit Function Theorem 693
A.9 Proof of Theorem 3.3.9: Equality of Crossed Partials 696
A.10 Proof of Proposition 3.3.19 698
A.11 Proof of Rules for Taylor Polynomials 701
A.12 Taylor’s Theorem with Remainder 706
A.13 Proof of Theorem 3.5.3 (Completing Squares) 711
A.14 Geometry of Curves and Surfaces: Proofs 712
A.15 Proof of the Central Limit Theorem 718
A.16 Proof of Fubini’s Theorem 722
A.17 Justifying the Use of Other Pavings 726
A.18 Existence and Uniqueness of the Determinant 728
A.19 Rigorous Proof of the Change of Variables Formula 732