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This paper reports on results of A. Douady, J. Hubbard

and R. Oberste-Vorth.

1. INTRODUCTION

In this paper we will try to describe the behavior of the

mapping F: Ez - Ezi

xz +ogl= Ay

F: [*] » a#0

Y 5 r r
under iteration; these maps will be called the Henon family.
The mapping F has constant Jacobian a, and is invertible;

in fact the inverse is given by

o

I 2
2 (¥ 4 ¢ = x)

The mapping F is not quite as arbitrary as it might

2

. Any polynomial map F: C +‘E2 of degree 2 can be

~;0rder for F to have constant Jacobian, it is necessary

F, have a one-dimensional kernel and a l-dimensional
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image. Any automorphism F: mz - mz

for which the kernel and
the image of F, are linearly independent can be conjugated to

an element of the Henon family.

2. HISTORY AND MOTIVATION

a) Henon first considered the Henon family while trying
to understand the Lorentz equations. He constructed a Poincaré
section of the Lorentz equations, and then tried to find a
simple mapping whose qualitative properties would be similar.

After some experimentation, he came up with an element
of the Henon family which appeared to have a strange attractor
similar to a section of the attractor found by Lorentz.

After much work, the theory is still fragmentary.

b) In 1925 (work completed by Bieberback in 1932) Fatou

gave examples of injective analytic mappings

g: Ez + ¢2,

whose images omit an open subset of ¢2.

The existence of such domains U = g(cz) shows that many
key results of complex analysis in one dimension fail in
higher dimensions, for instance:

Montel: Any family P U + T of meromorphic functions
which omit three values is eguicontinuous.

The following is one way (as far as I know the only way)
of constructing such mappings g.

1. Find a mapping F of the Henon family with an attractive
fixed point §b.

2. 1f the eigenvalues A, of d~F satisfy |A;] < |x,| and
3, e il 2
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hl = Ag for all n = 2,3,..., then there exists

g: (@?,0) + (mz{ib) such that

g(@) =%, + ¥ +o(|ul), and
Fog=goe dibF.

This is a result of S. Sternberg (~1959); if Ill| > ]Azlz,

you can show:

Proposition (Oberste-Vorth). The limit

g(@) = limn F (@, H°"@ + %)
nsw *0

exists for all U « Ez, and defines a Fatou-Bieberbach mapping.

If [A;| and |A,| are farther apart, it is harder to con-
struct g.
Such mappings have largely been viewed as pathological.

Calabi asked me what the image looked like. The results of

this paper grew out of his guestion.

3. THE RELATION WITH THE THEORY OF POLYNOMIALS

In the study of iteration of polynomials of one variable,
extending to complex values of the variable has been very
useful, even if the original polynomials was real. We hope
the same thing will happen in this case, essentially for the
same reason.

There is essentially nothing you can say about real poly-
nomials which is independent of the coefficients, largely
because virtually all features independent of conjugation,

such as periodic cycles, are liable to disappear as the
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parameters are varied. In the complex domain, the behavior is

far more uniform.

d-1

Let P(z) = zd +ag 12 4+ v.. + a. be a polynomial. The

0
most useful construction is the function ¢P(z): (¢,=) + (C,)

such that
4p(R(2)) = (6p(2))% and
¢P(Z) =z + 0(l) near « .

The function ¢P(z) is constructed as follows

n
bp(2) = Lim (2" (29

n-+«©
(This is a standard "scattering theory construction": go to
= by P, and return by the unperturbed map PO: Z: ¥ zd.) In
order to give a meaning to the (1/dn)—power, write the limit

above as an infinite product

2
@@ p(e2@n /e

2 (p(2)) /4 2

¢P(Z) =z°*

and note that

K+l
K+l ok, d-1 1/d
@0 (K1) 5y /@ (1 , 2a® (z)) +...+ao) -

1/a% . K (z))9

p°¥(2))
Since the denominator is larger than the numerator for large
z, we can define the root to be the principal branch. It is
easy to show that the infinite product converges.
1f we don't want to worry about branches of roots, we

can define

hy(2) = lin ;15 log, |2 (2) |,
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where log, (x) = sup(log(x),0).
It is quite easy to show that this limit exists and is

continuous on all of €, harmonic on C - Kp, where

K, = {z|2°P(2) # «}.

In fact, hP is the Green's function of Kp.
We will define functions ¢ and h analogous to these on Ez.

4, RATES OF ESCAPE FOR THE HENON FAMILY

Look at the formula for the Henon mappings. If x is
reasonably large, and large with respect to y, then the

predominant behavior is that the x-coordinate gets squared.

That motivates the following proposition.

Proposition 1. The limit

Xy _ % i i} oll X
h [[]] = 11m-ilog+|F [y]

+lyl = Mo 2 1l

where [;ll = x, exists and defines a continuous function on

mz, harmonic on
X X
U, = {1, 151 > o).
We have
e X
h+(F[y]) = 2h+[y] .
The behavior of h+ is partially described below.

Proposition 2. The mapping

is a trivial fibration whose fibers are homeomorphic to the
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complement of a solencoid in 53.

The following sketch of a proof will explain what is meant

by a solenoid.

Idea of Proof. We will first choose a region V, _ < mz for

which the points surely escape. One such choice is

v, = (G1]1yl < alx|?, x| > 83,

with a = EEET , and B = sup(vZ]c], 3¥Z|a|, 3). Then
V,<c U, and U = ngo f_n(V+). It is fairly clear that

h, (1) = loglx| + o(tog(|x|? + |v|*)),

uniformly in V.
Let U+(s) = {x € U+|h+(x) = s}, and V+(s) =U,(s) n V,.

Then V+(s) is for large s very nearly the set
X = 2
] x| = e, |y| < alx|"},

and as such is a solid torus. The key point is: How does
F(V, (x)) < V, (2s) look?
Answer: The map of f wraps v+(s) into V_ _(2s) by winding it

around twice, as in the first picture on the following page.

Now we can think of
u, = v, (s) v Flv, (28) v F 2w _(45)) v ...
+ + + + 4

where each of the terms in the increasing union is a solid
torus winding twice around inside the next.

This is a little hard to imagine, but can be done if you
recall that the outside, in 53, of an unknotted solid torus

is also a solid torus. So consider the second diagram:
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Outside of

Qutside of

NS -

This realizes an increasing union as above, and the union is

the complement of a solenoid. Q.E.D.

5. ANGLES OF ESCAPE

In the case of polynomials, there existed an analytic

function ¢P defined near = such that

10g|¢P| = hP'
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Question: Can we define something analogous in Ez?
Answer: No! Still, what ought to be the fibers of ¢ c
exist; however, they are dense in U+(s). Their intersectic

with V+(s) are dense.

Proposition 3. There exists an analytic function

¢, 2V, > T~ D such that
log|o,| = hy.

and
6, (FG) = (6, G032

Tdea of Proof. Give a meaning to the roots in

b e n
6, = lim (PG

n+e
by passing to an infinite product as in the case of poly-
nomials, and show convergence.

You cannot extend ¢+ to all of u,. The following

proposition describes what happens when you try.

Proposition 4. & fiber of ¢,, as a closed Riemann su
in V+(s), can be continued to a Riemann surface isomorphi
¢ and dense in U+(s). These Riemann surfaces foliate U+(

and the mapping
X0, (0/00,00]

induces a bijection of the set of leaves onto the (non-

Hausdorff) group R /Z [%] .

Idea of the Proof. Consider again the picture




w
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o cle vfj‘» rodso Ql

Since F is analytic, we see that the two discs ¢_';1(zo) u
¢:_l(-zo) are in F-l(v+(2s)) two subdiscs of the disc
F_l(cp:_l(zg) ). Continuing into F-Z(V+(4s)),... we see that
¢;l(zoj can be continued to a Riemann surface with a strati-

fication looking like the following drawing.

——————
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The shaded internal discs are the intersections of the
Riemann surface with the original v+(s); however, they are
2wik:
-1 2"
* \ %0
as m ranges over 1,2,... and k ¢ {1,...,m}.
The proof that the Riemann surfaces are isomorphic to €
depends on showing that the moduli of appropriate annuli

grow; this is easy to show. Q.E.D

Remark. The foliation is actually more natural than you

might expect. Since

Every real hyperplane of ¢” contains a unique

complex hyperplane,

the tangent space to U+(s) at a point contains a unique com-
plex direction. The leaves are simply the integral curves of
this field of directions. Of course, this could be said of
the level surfaces of any real valued function, but in

general such fields of directions have no integral curves.

6. A PROGRAM FOR DESCRIBING MAPPINGS IN THE HENON FAMILY

All the above could be said of F L as well as F, giving
rise to U_, V_, h_.

Define K, = Ez - g K = EZ - U K=K, nkK

+ +! =T - T =

We propose, as a strategy for studying a mapping F in the
Henon family, to try to understand how the fibers U+(s)
collapse onto BK+ as g + 0.

As an example of such a description, we propose the fol-

lowing conjecture.
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Let a: s3 » s? be the map which is more or less implicit
in the definition of a solenoid. More precisely define a
sequence 'I'i c 53, i=...,-1,0,1,... of tori, each decom-
: 3 ; T . - ; + +
posing 5° into two solid tori T; and T,, with T, < T; ., and
winding around twice. Suppose that x" = nT-j': and X = nTj
+

are both solenoids, and define ¢ so that o(TI+l) = Ti‘

On ]R4 , parametrized in "spherical coordinates" by (r,s)
with r € [0,*), 8 € 53, consider the map g: (r,s) —+ (rz,o(s)).
Let Y = (]R'1 - cone(X )) u B, and note that g(¥) < ¥ and

Y is homeomorphic to IR4 .

Conjecture. If F has an attractive fixed point, then F

is conjugate to g: ¥ +~ Y by a homeomorphism ¢: EZ F ¥

This would have, among others, the conseguence that there
exists a Fatou-Bieberbach domain whose boundary is a topolo-
gical manifold, and that there are infinitely many analytic
embeddings of € into the boundary whose images are dense.

Computer pictures support the above conjecture.
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