Transversality

John Hubbard

according to Adam Epstein
A Teichmüller Space of Rational Functions

Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be a rational function with critical set Ω_f, and $X, Y \subset \mathbb{P}^1$ two finite subsets, such that

$$X \cup f(X) \cup f(\Omega_f) \subset Y.$$

Typically, X is some initial segment of the post-critical locus together with some finite set of cycles, and Y is $X \cup f(X)$, together with any critical values omitted from X. We will assume that $|X| \geq 3$.

There are then two analytic mappings
\(\iota_X, \sigma_f : \mathcal{T}_Y \to \mathcal{T}_X \). The map \(\iota_X \) is simply the
forgetful map, which forgets the points of
\(Y - X \); for it to be defined we evidently need
precisely \(X \subset Y \).

Proposition 1. *The map \(f^* \) on Beltrami forms induces an analytic map \(\sigma_f : \mathcal{T}_Y \to \mathcal{T}_X \).*

Define \(\text{Def}(f, X) \subset \mathcal{T}_Y \) to be the analytic
subset defined by the equation \(\sigma_f = \iota_X \). Of
course the trivial Beltrami form \(\mu = 0 \)
represents a point of \(\text{Def}(f, X) \) denoted \(\tau_0 \).
Let $Z \subset S^2$ be a finite subset. Recall that

- T_Z is the space of homeomorphisms

$$
\phi : (S^2, Z) \to \mathbb{P}^1 \quad \text{modulo isotopy rel } \phi(Z) \text{ and automorphisms of } \mathbb{P}^1;
$$

- T_Z a complex manifold of dimension $|Z| - 3$;

- The cotangent space $T^*_{[\phi]} T_Z$ is canonically isomorphic to $Q^1(\mathbb{P}^1 - \phi(Z))$, the space of integrable holomorphic quadratic differentials on $\mathbb{P}^1 - \phi(Z)$;

- The vector space $Q^1(\mathbb{P}^1 - \phi(Z))$ carries the L^1 norm

$$
|q| = \int_{\mathbb{P}^1 - \phi(Z)} |q|.
$$
Theorem 1. The space $\text{Def}(f, X)$ is an analytic submanifold of \mathcal{Ty}, of dimension $|Y| - |X|$.

We need to identify the derivatives of ι_X and σ_f, or rather their transposes.

Proposition 2. The coderivatives of ι_X and σ_f are given by the formulas

$$(D\iota_X(\tau_0))^\top : Q^1(X) \to Q^1(Y)$$

is the obvious inclusion, and

$$(D\sigma_f(\tau_0))^\top : Q^1(X) \to Q^1(Y)$$

is the direct image operator f_*.
Theorem 2. If f is not a flexible Lattès example, the map $\nabla_f : Q^1(X) \rightarrow Q^1(Y)$ defined by $\nabla_f(q) = f_*q - q$ is injective.

Except in the special cases where there is a subset $Z \subset Y$ with $|Z| \geq 4$ such that $f^{-1}(Z) \subset X \cup \Omega_f$

we have $\|f_*\| < 1,$

and then the result is true. In the special cases one needs to fiddle a bit.
This proves Theorem 1: in local coordinates, \(\text{Def}(f, X) \) is defined by the equation \(i^* - f^* = 0 \). The derivative of the equation \(\mu \mapsto i^* \mu - f^* \mu \) is surjective if and only if its transpose is injective. The transpose is \(\nabla_f \).
For every $\tau \in \text{Def}(f, X)$ represented by the Beltrami differential μ, we can find quasiconformal homeomorphisms $\phi, \psi : \mathbb{P}^1 \to \mathbb{P}^1$ such that
\[
\frac{\partial \phi}{\partial \bar{z}} = \mu \frac{\partial \phi}{\partial z}, \quad \frac{\partial \psi}{\partial \bar{z}} = f^* \mu \frac{\partial \psi}{\partial z}
\]
and such that ϕ and ψ coincide on X.

The Beltrami forms μ and $f^* \mu$ are not equal: they define the same point of \mathcal{T}_X. By composing with a Möbius transformation we can make them agree on X, and then be isotopic rel X.

Since $|X| \geq 3$, the map ψ is uniquely determined by ϕ, so it makes sense to write $f_\phi := \phi \circ f \circ \psi^{-1}$.
Why is $\text{Def}(f,X)$ called a space of rational functions?
Why is $\text{Def}(f, X)$ called a space of rational functions?

Let Rat_d be the space of rational functions of degree d.

Why is $\text{Def}(f, X)$ called a space of rational functions?

Let Rat_d be the space of rational functions of degree d.
Why is $\text{Def}(f, X)$ called a space of rational functions?

Let Rat_d be the space of rational functions of degree d.

Proposition 4. The map $\phi \mapsto f_\phi$ induces an analytic mapping $\Pi : \text{Def}(f, X) \to \text{Rat}_d$.
Why is $\text{Def}(f, X)$ called a space of rational functions?

Let Rat_d be the space of rational functions of degree d.

Proposition 4. The map $\phi \mapsto f_\phi$ induces an analytic mapping $\Pi : \text{Def}(f, X) \rightarrow \text{Rat}_d$.

You should think of $\text{Def}(f, X)$ as a Teichmüller space, of Rat_d as the corresponding moduli space, and Π as the natural projection from Teichmüller space to moduli space.
The rational functions parametrized by $\text{Def}(f, X)$ all share those features of f that appear in X.

If some cycle of f appears in X it exists, as a labeled cycle, for all the rational functions f_ϕ, even if the cycle bifurcates in Rat_d at $\Pi([\phi])$.

If some critical relation appears in X, it will be shared by all f_ϕ, but not otherwise.
Invariant polar parts

The object of transversality is to differentiate various dynamically natural functions on $\text{Def}(f, X)$, such as:

- multipliers of cycles in X;
- multiplicities of parabolic cycles;
- the formal invariant of a parabolic cycle;
- breaking critical relations.

These may not look like functions, but they can all be interpreted as functions if you try hard.
The derivative of a holomorphic function \(\alpha : \text{Def}(f, X) \to \mathbb{C} \) at the base point \(f \) is an element of the cotangent space

\[
T_f^\top \text{Def}(f, X) = Q^1(Y)/\nabla_f(Q^1(X)).
\]

Thus we need a technique to produce elements of this cotangent space.
Let $X, Y \subset \mathbb{P}^1$ be finite subsets as above, and $Z \subset X$ be a union of cycles.

Let $Q(X, Z)$ be the space of meromorphic quadratic differentials on \mathbb{P}^1 holomorphic on $\mathbb{P}^1 - X$, with at worst simple poles on $X - Z$ and arbitrary poles on Z,

and $Q^1(X) \subset Q(X, Z)$ the subspace of integrable quadratic differentials holomorphic on $\mathbb{P}^1 - X$

(and hence having at worst simple poles on X).
The diagram

\[
\begin{array}{cccc}
0 & \rightarrow & Q^1(X) & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow \\
N(Z) & \rightarrow & Q(X, Z) & \rightarrow & Q^1(Y) \\
\downarrow & & \downarrow & & \downarrow \\
K(Z) & \rightarrow & P(Z) & \rightarrow & Q(Y, Z) \\
\downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & 0 & \rightarrow & P'(Z)
\end{array}
\]

is a convenient way to organize all these spaces.
By definition the columns are exact, so that
\[P(Y) = Q(X, Z)/Q^1(X) \] and
\[P'(Z) = Q(Y, Z)/Q^1(Y). \] As such, these spaces consist of polar parts of quadratic differentials on \(Z \), but these polar parts must actually be realized by global meromorphic quadratic differentials. This requirement is in fact empty. Further, \(K(f, Z) = \ker \nabla_f : P(Z) \rightarrow P'(Z). \)

Lemma 1. The natural inclusion \(P(Z) \hookrightarrow \bigoplus_{z \in Z} P(z) \) is an isomorphism. In particular, \(P(Z) = P'(Z) \) (but \(\nabla_f \) is not the isomorphism).
An elementary argument from homological algebra called the *snake lemma* then says that there is an exact sequence
An elementary argument from homological algebra called the *snake lemma* then says that there is an exact sequence

$$0 \rightarrow N(Z) \rightarrow K(Z) \rightarrow Q^1(Y)/\nabla_f(Q^1(X))$$
An elementary argument from homological algebra called the *snake lemma* then says that there is an exact sequence

\[0 \to N(Z) \to K(Z) \to Q^1(Y)/\nabla_f(Q^1(X)) \to 0 \]

\[
\begin{array}{cccccc}
0 & \to & N(Z) & \to & K(Z) & \to \quad Q^1(Y)/\nabla_f(Q^1(X)) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
Q^1(X) & \to & Q(X, Z) & \to & Q(Y, Z) & \to & Q^1(Y)/\nabla_f(Q^1(X)) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
N(Z) & \to & Q(X, Z) & \to & Q(Y, Z) & \to & Q^1(Y)/\nabla_f(Q^1(X)) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
K(Z) & \to & P(Z) & \to & P'(Z) & \to & 0 & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & & 0 & & 0 & & 0 & & 0 \\
\end{array}
\]
An elementary argument from homological algebra called the *snake lemma* then says that there is an exact sequence

\[0 \to N(Z) \to K(Z) \to Q^1(X)/\nabla f(Q^1(X)) \]

\[
\begin{array}{ccccccc}
N(Z) & \to & Q(X,Z) & \to & Q(Y,Z) & \to & Q^1(Y)/\nabla f(Q^1(X)) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & & 0 & & 0 & & 0 \\
\end{array}
\]
Thus we need to compute $K(Z)$ and $N(Z)$. In other words, we need to compute the invariant polar parts, i.e., the terms of degree ≤ -2 of quadratic differentials in the kernel of ∇f, but only invariant up to integrable terms (i.e., up to terms with simple poles).
This is a purely local computation, done by formal power series.

Let $f : (\mathbb{C}, 0) \rightarrow (\mathbb{C}, 0)$ be a germ of an analytic mapping at 0, with $f(0) = 0$ and
$\lambda := f'(0) \neq 0$. Let $Q(\mathbb{C}, 0)$ be the space of germs of meromorphic quadratic differentials at
$0 \in \mathbb{C}$, and $Q^1(\mathbb{C}, 0)$ the subspace of those quadratic differentials with at most simple poles.

Define the operator

$$\nabla_f : Q(\mathbb{C}, 0) \rightarrow Q(\mathbb{C}, 0) \quad \text{by}
\nabla_f(q) = f_*q - q.$$

Let $K(f, 0) = \ker \nabla_f$.
Proposition 5. If the origin is not parabolic, then $K(f, 0)$ has dimension 1, generated by

$$q_0 = \frac{dz^2}{z^2}.$$

If the origin is parabolic, find a local coordinate z around 0 in which f is written

$$f(z) = \lambda z (1 + z^{m\beta} + Cz^{2m\beta} + \ldots)$$

where $\lambda = e^{2i\pi\alpha/\beta}$ with $(\alpha, \beta) = 1$. Then the space $K(f, 0)$ is the direct sum of an m-dimensional subspace $K'(f, 0)$ and a 1-dimensional space $K''(f, 0)$.
The quadratic differentials

\[q_0 = \frac{dz^2}{z^2}, \quad q_1 = \frac{dz^2}{z^{\beta+2}}, \ldots, \quad q_{m-1} = \frac{dz^2}{z^{(m-1)\beta+2}}, \]

form a basis of \(K'(f, 0) \), and although the basis (except \(q_0 \)) is not natural, the filtration

\[K'_0(f, 0) \subset K'_1(f, 0) \subset \cdots \subset K'_{m-1}(f, 0) \]

with \(K'_i(f, 0) \) generated by \(q_0, \ldots, q_i \) is natural.

The quadratic differential

\[q'' := \left(\frac{1}{z^{2m\beta+2}} - \frac{B}{z^{m\beta+2}} \right) dz^2 \]

with \(B = m\beta(2C-(m\beta+1)) \) generates \(K''(f, 0) \).
Some important derivatives

Let $Z \subset X$ be a cycle under f, and consider the function

$$\lambda_Z : \text{Def}(f, X) \to \mathbb{C}$$

whose value at $[\phi] \in \text{Def}(f, X)$ is the multiplier of the cycle $\phi(Z)$ for the rational map f_ϕ. This function is well-defined since the multiplier is invariant under analytic conjugacies. The first object is to compute its derivative at the base point τ_0. Since
\[D\lambda_Z(\tau_0) \in T_{\tau_0} \text{Def}(f, X)^\top = Q(Y)/\nabla_f Q(X), \]
we are looking for such an equivalence class of quadratic differentials.

There is a clear candidate, the element \(q_{Z,0} \) of the quotient space, which exists for all multipliers \(\lambda \neq 0 \). Recall that this element, via the snake lemma, comes from double poles along the cycle.

Proposition 6. The 1-form \(d\log \lambda_Z(\tau_0) \) is the class of

\[
\frac{1}{2\pi i} \nabla_f q_{Z,0}
\]

in \(Q^1(Y)/\nabla_f Q^1(X) \).
The proof is not really hard (2 pages after setting up the notation): it involves asymptotic developments, Stokes theorem, the residue formula, and duality between quadratic differentials and Beltrami forms.

Still, doing it in a lecture (at least this lecture) seems unreasonable.
Let

\[Z = \{z_0, \ldots, z_{k-1}, z_k = z_0\} \]

be a parabolic cycle with multiplier

\[(f^o k)'(z_0) = e^{2\pi i \alpha/\beta}, \]

and of multiplicity \(m \).

As before, we suppose that we have chosen a realization

\[\text{Def}(f, X) \times \mathbb{P}^1 \rightarrow \mathbb{P}^1 \]

denoted \((\tau, z) \mapsto f_{\tau}(z)\)

and denote by \(z_{\tau} = \{z_0(\tau), \ldots, z_{k-1}(\tau)\} \) the cycle of \(f_{\tau} \) corresponding to \(Z \).
Let \(K_0'(f; X, Z) \subset K_1'(f; X, Z) \subset \ldots \subset K_{m-1}'(f; X, Z) = K'(f, X, Z) \).

be the filtration of the space of invariant quadratic differentials according to the order of the pole.

In the space \(\text{Def}(f, X) \), we can define subsets

\[
F^1(Z) \supset F^2(Z) \supset F^3(Z) \supset \ldots \quad \text{where}
\]

\[
F^l(Z) = \{ \tau \in \text{Def}(f, X) \mid Z_\tau \text{ is parabolic of multiplicity } \geq l \}.
\]
Proposition 7. If $\xi \in T_{\tau_0} \text{Def}(f, X)$ is tangent to $Z^l(C)$, then ξ is orthogonal to $K_l(f; X, Y)$.
Suppose now that
\[Z = \{y_0, \ldots, z_{k-1}, z_k = z_0\} \]
is a cycle for \(f \) that is parabolic with multiplier
\[e^{2\pi i \alpha / \beta} \], and of multiplicity \(m \). Set \(n = m \beta \).
Suppose further that \(f_t \) is an family of rational functions in \(F^m(Z) \), i.e., such that for all \(t \) the cycle \(Z(t) = \{z_0(t), \ldots, z_{k-1}(t)\} \) is parabolic with the same multiplier \(e^{2\pi i \alpha / \beta} \) and the same multiplicity \(m \). Then
\[C(t) = \text{Res}_{z_0} \left\{ \frac{d\zeta}{\zeta - f^0 \zeta} \right\}. \]
Proposition 8. The quadratic differential \tilde{q}''_Z represents the derivative of the formal invariant:

$$C'(0) = -\frac{\beta}{2\pi i B} q''_Z.$$
An application:

The Fatou-Shishikura inequality

Let f be a rational function.

Associate to each cycle $c = \{z_0, \ldots, z_{l-1}\}$ of f a number $N(c)$ defined to be
\[N(c) = \]

\begin{align*}
0 & \quad \text{if } c \text{ is repelling}, \\
0 & \quad \text{if } c \text{ is superattracting}, \\
1 & \quad \text{if } c \text{ is attracting, not superattracting}, \\
1 & \quad \text{if } c \text{ is irrationally indifferent}, \\
\nu & \quad \text{if } c \text{ is parabolic of multiplicity } \nu \text{ and} \\
& \quad \text{virtually repelling}, \\
\nu + 1 & \quad \text{if } c \text{ is parabolic of multiplicity } \nu \\
& \quad \text{and virtually non-repelling.}
\end{align*}

The number \(N(f) \) is the number of non-repelling cycles of \(f \) counted with this multiplicity.
The number $M(f)$ is the number of infinite tails of critical orbits.

Clearly $M(f) \leq 2d - 2$, but if there are any critical orbit relations (i.e. an identity of the form $f^{\circ i}(\omega_1) = f^{\circ j}(\omega_2)$ for some $i, j \geq 0$), such as superattracting cycles, or any multiple critical points, then it will be smaller.
Theorem

The numbers $N(f)$ and $M(f)$ satisfy the inequality

$$N(f) \leq M(f)$$
Outline of the proof

Let \(X \) be an initial segment of the postcritical set, large enough to contain all critical relations, together with all non-repelling cycles.

Let \(Y = X \cup f(X) \).

Then \(\text{Def}(f, X) \) has dimension

\[
|Y| - |X| = M(f).
\]
To each cycle we have attached various cotangent vectors to Def(f, X).

For each attracting, non-super attracting cycle, the space of cotangent vectors was 1-dimensional.

For each indifferent non-parabolic cycle, the dimension was also 1.

For a parabolic cycle of multiplicity ν, there was a ν-dimensional subspace (corresponding to multiplicity), and a 1-dimensional subspace corresponding to the formal invariant.
All these spaces are linearly independent, except the 1-dimensional contribution for the virtually repelling parabolic cycles.

The idea to prove this is to take a linear combination q of the quadratic differentials with divergent integrals which give rise to the cotangent vectors, and

to choose neighborhoods of U_c of the non-repelling cycles,

and to set $W = \mathbb{P}^1 - \bigcup_c U_c$.
Then

\[\int_{f^{-1}W} |q| < \int_{W} |q|. \]

Thus \(q \notin N(Z) \), so it maps to a non-zero cotangent vector to \(\text{Def}(f, X) \).
that's all folks!!