Additions to Second Edition Errata and Comments
May 8, 2002

We again thank Dick Palas for his many contributions.

Page 297 Third line: “variables in terms,” not “variables terms.”

Page 319 Example 3.2.5 refers to Example 3.1.11, but that example concerned a different function. Example 3.2.5 has been rewritten to show that X_c is a smooth curve for all c:

The locus X_c defined by $x^9 + 2x^3 + y + y^5 = c$ is a smooth curve for all values of c since the derivative of the function $F(x, y) = x^9 + 2x^3 + y + y^5$ is

$$DF(x, y) = [9x^8 + 6x^2, 1 + 5y^4],$$

and $1 + 5y^4$ is never 0.

Page 325 In the first line after Equation 3.3.10, the reference should be to Equation 3.3.9 and footnote 7.

Page 326 First line after Equation 3.3.16: “There are 30 such terms” refers to terms other than the five terms in Equation 3.3.16. Thus there are 35 in all.

Page 340 Equation 3.4.17 should include $= 0$:

$$F(x, y) = x^3 + xy + y^3 - 3 = 0.$$

Page 347 Margin note beginning “Definition 3.5.9 is equivalent”: Exercise 3.5.7 concerns only positive definite quadratic forms.

The last margin note, about $Q(p)$, should be on page 343.

Page 356 Last margin note: This is true for a quadratic form on \mathbb{R}^n.

Page 357 First margin note: This is true for a quadratic form on \mathbb{R}^n.

Page 362 There should be a \triangle to mark the end of Example 3.7.3.

Page 365 The \triangle at the end of the caption should be on the next page, at the end of the example.

Page 367 Margin note immediately after the figure caption: “manifold,” not “manifolds.”
Page 370 There should be a \triangle to mark the end of Example 3.7.11.

Page 378 Equation 3.8.5: $g(X)$, not $g(x)$.

Page 379 Example 3.8.3, next to last line: the curvature $\frac{2}{5\sqrt{5}}$ is ≈ 0.179, not ≈ 0.896. (We had put the $\sqrt{5}$ in the numerator.) We have redone Figure 3.8.2.

Figure 3.8.2. At $\left(\frac{1}{2}\right)$, which corresponds to $a = 1$, the parabola given by $y = x^2$ looks much flatter than the unit circle. Instead, it resembles a circle of radius $5\sqrt{5}/2 \approx 5.59$. (A portion of such a circle is shown. Note that it crosses the parabola. This is the usual case, occurring when, in adapted coordinates, the cubic terms of the Taylor polynomial of the difference between the circle and the parabola are nonzero.) At the origin, which corresponds to $a = 0$, it has curvature 2 and resembles the circle of radius $1/2$, which also has curvature 2. “Resembles” is an understatement. At the origin, the Taylor polynomial of the difference between the circle and the parabola starts with fourth-degree terms.

Page 387 Equation 3.8.42: The numerator should be $H(a^2 - b^2)$, not $H(b^2 - a^2)$.

Page 394 In the hint for Exercise 3.8.11, we neglected to define $SO(3)$. It is the space of orthogonal 3×3 matrices with determinant +1. (Recall that an orthogonal $n \times n$ matrix is a matrix whose columns form an orthonormal basis of \mathbb{R}^n.)

Page 398 Exercise 3.21, part (a): $2d \cos \varphi$ should be $2ad \cos \varphi$:

$$a^2 + d^2 - 2ad \cos \varphi = b^2 + c^2 - 2bc \cos \psi.$$

Additions to index:

active variable, 179, 274, 293
augmented matrix, 190, 196
divergence, 635–637, 639–640
d’Alembert, Jean Le Rond, 119, 217
Dedekind, Richard, 234
invertibility of matrices, 223
level curve, 301
level set, 301
limit, 89, 90, 93, 97
linear independence, 228
linear programming, 248
maximum, different from maximum value, 114
minimum, different from minimum value, 115
passive variable, 180, 274, 293
power set, 24
precisely if, 67
span, 228