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Chapter 0: A Preview

Pythagorean Triples

As an introduction to the sorts of questions that we will be studying, let us con-

sider right triangles whose sides all have integer lengths. The most familiar example

is the (3,4,5) right triangle, but there are many others as well, such as the (5,12,13)

right triangle. Thus we are looking for triples (a, b, c) of positive integers such that

a2
+ b2

= c2 . Such triples are called Pythagorean triples because of the connection

with the Pythagorean Theorem. Our goal will be a formula that gives them all. The

ancient Greeks knew this formula, and even before the Greeks the ancient Babylonians

must have known a lot about Pythagorean triples because one of their clay tablets from

nearly 4000 years ago has been found which gives a list of 15 different Pythagorean

triples, the largest of which is (12709,13500,18541) . (Actually the tablet only gives

the numbers a and c from each triple (a, b, c) for some unknown reason, but it is

easy to compute b from a and c .)

There is an easy way to create infinitely many Pythagorean triples from a given

one just by multiplying each of its three numbers by an arbitrary number n . For

example, from (3,4,5) we get (6,8,10) , (9,12,15) , (12,16,20) , and so on. This

process produces right triangles that are all similar to each other, so in a sense they

are not essentially different triples. In our search for Pythagorean triples there is

thus no harm in restricting our attention to triples (a, b, c) whose three numbers

have no common factor. Such triples are called primitive. The large Babylonian triple

mentioned above is primitive, since the prime factorization of 13500 is 223353 but

the other two numbers in the triple are not divisible by 2, 3, or 5.

A fact worth noting in passing is that if two of the three numbers in a Pythagorean

triple (a, b, c) have a common factor n , then n is also a factor of the third number.

This follows easily from the equation a2
+ b2

= c2 , since for example if n divides a

and b then n2 divides a2 and b2 , so n2 divides their sum c2 , hence n divides c .
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Another case is that n divides a and c . Then n2 divides a2 and c2 so n2 divides

their difference c2
−a2

= b2 , hence n divides b . In the remaining case that n divides

b and c the argument is similar.

A consequence of this divisibility fact is that primitive Pythagorean triples can also

be characterized as the ones for which no two of the three numbers have a common

factor.

If (a, b, c) is a Pythagorean triple, then we can divide the equation a2
+b2

= c2 by

c2 to get an equivalent equation
(a
c

)2
+
(b
c

)2
= 1. This equation is saying that the point

(x,y) =
(a
c
,
b
c

)

is on the unit circle x2
+ y2

= 1 in the xy -plane. The coordinates
a
c

and
b
c

are rational numbers, so each Pythagorean triple gives a rational point on

the circle, i.e., a point whose coordinates are both rational. Notice that multiplying

each of a , b , and c by the same integer n yields the same point (x,y) on the circle.

Going in the other direction, given a rational point on the circle, we can find a common

denominator for its two coordinates so that it has the form
(a
c
,
b
c

)

and hence gives a

Pythagorean triple (a, b, c) . We can assume this triple is primitive by canceling any

common factor of a , b , and c , and this doesn’t change the point
(a
c
,
b
c

)

. The two

fractions
a
c

and
b
c

must then be in lowest terms since we observed earlier that if two

of a , b , c have a common factor, then all three have a common factor.

From the preceding observations we can conclude that the problem of finding

all Pythagorean triples is equivalent to finding all rational points on the unit circle

x2
+y2

= 1. More specifically, there is an exact one-to-one correspondence between

primitive Pythagorean triples and rational points on the unit circle that lie in the

interior of the first quadrant (since we want all of a,b, c, x,y to be positive).

In order to find all the rational points on the circle x2
+ y2

= 1 we will use

a construction that starts with one rational point and creates many more rational

points from this one starting point. There are four obvious rational points on the

circle we could use to start, the intersections of the circle with the coordinate axes,

the points (±1,0) and (0,±1) . It doesn’t

really matter which one we choose, so let’s

choose (0,1) . Now consider a line which

intersects the circle in this point (0,1) and

some other point P , as in the figure at the

right. If the line has slope m , its equa-

P

0r( ),

10( ),

tion will be y =mx + 1. If we denote the

point where the line intersects the x -axis

by (r ,0) , then m = −1/r so the equation for the line can be rewritten as y = 1−
x
r

.
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To find the coordinates of the point P in terms of r we substitute y = 1−
x
r

into the

equation x2
+ y2

= 1 and solve for x :

x2
+

(

1−
x

r

)2

= 1

x2
+ 1−

2x

r
+
x2

r 2
= 1

(

1+
1

r 2

)

x2
−

2x

r
= 0

(

r 2
+ 1

r 2

)

x2
=

2x

r

x =
2r

r 2 + 1
or x = 0

Plugging x =
2r

r 2 + 1
into the formula y = 1−

x
r

, we get

y = 1−
x

r
= −

1

r

(

2r

r 2 + 1

)

+ 1 =
−2

r 2 + 1
+ 1 =

r 2
− 1

r 2 + 1

Summarizing, we have found that the point P has coordinates

(x,y) =

(

2r

r 2 + 1
,
r 2
− 1

r 2 + 1

)

Note that when x = 0 there are two points (0,±1) on the circle. The point (0,−1)

comes from the value r = 0, while if we let r approach ±∞ then the point P ap-

proaches (0,1) , as we can see either from the picture or from the formula for (x,y) .

If r is a rational number, then the formula for (x,y) shows that both x and y

are rational, so we have a rational point on the circle. Conversely, if both coordinates

x and y of the point P on the circle are rational, then the slope m of the line must

be rational, hence r must also be rational since r = −1/m . We could also solve the

equation y = 1 −
x
r

for r to get r =
x

1−y
, showing again that r will be rational

if x and y are rational. The conclusion of all this is that, starting from the initial

rational point (0,1) we have found formulas that give all the other rational points on

the circle.

Since there are infinitely many choices for the rational number r , there are in-

finitely many rational points on the circle. But we can say something much stronger

than this: Every arc of the circle, no matter how small, contains infinitely many rational

points. This is because every arc on the circle corresponds to an interval of r -values

on the x -axis, and every interval in the x -axis contains infinitely many rational num-

bers. Since every arc on the circle contains infinitely many rational points, we can say
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that the rational points are dense in the circle, meaning that for every point on the

circle there is an infinite sequence of rational points approaching the given point.

Now we can go back and find formulas for Pythagorean triples. If we set the

rational number r equal to p/q with p and q integers having no common factor,

then the formulas for x and y become

x =
2
(p
q

)

p2

q2 + 1
=

2pq

p2 + q2

y =

p2

q2 − 1

p2

q2 + 1
=
p2
− q2

p2 + q2

This means we obtain Pythagorean triples

(a, b, c) = (2pq,p2
− q2, p2

+ q2)

Here are a few examples with small values of p and q :

(p, q) (x,y) (a, b, c)

(2,1) (4/5,3/5) (4,3,5)

(3,1)∗ (6/10,8/10)∗ (6,8,10)∗

(3,2) (12/13,5/13) (12,5,13)

(4,1) (8/17,15/17) (8,15,17)

(4,3) (24/25,7/25) (24,7,25)

(5,1)∗ (10/26,24/26)∗ (10,24,26)∗

(5,2) (20/29,21/29) (20,21,29)

(5,3)∗ (30/34,16/34)∗ (30,16,34)∗

(5,4) (40/41,9/41) (40,9,41)

(6,1) (12/37,35/37) (12,35,37)

(6,5) (60/61,11/61) (60,11,61)

(7,1)∗ (14/50,48/50)∗ (14,48,50)∗

(7,2) (28/53,45/53) (28,45,53)

(7,3)∗ (42/58,40/58)∗ (42,40,58)∗

(7,4) (56/65,33/65) (56,33,65)

(7,5)∗ (70/74,24/74)∗ (70,24,74)∗

(7,6) (84/85,13/85) (84,13,85)

The starred entries are the ones with nonprimitive Pythagorean triples. Notice that

this occurs only when p and q are both odd, so that not only is 2pq even, but also

both p2
−q2 and p2

+q2 are even, so all three of a , b , and c are divisible by 2. The

primitive versions of the nonprimitive entries in the table occur higher in the table,

but with a and b switched. This is a general phenomenon, as we will see in the course

of proving the following basic result:
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Proposition. Up to interchanging a and b , all primitive Pythagorean triples (a, b, c)

are obtained from the formula (a, b, c) = (2pq,p2
− q2, p2

+ q2) where p and q are

positive integers with no common factor and of opposite parity (one even and the

other odd).

Proof : We need to investigate when the formula (a, b, c) = (2pq,p2
− q2, p2

+ q2)

gives a primitive triple, assuming that p and q have no common divisor.

Case 1: Suppose p and q have opposite parity. If all three of 2pq , p2
− q2 , and

p2
+q2 have a common divisor d > 1 then d would have to be odd since p2

−q2 and

p2
+q2 are odd when p and q have opposite parity. Furthermore, since d is a divisor

of p2
− q2 and p2

+ q2 it must divide their sum (p2
+ q2) + (p2

− q2) = 2p2 and

also their difference (p2
+ q2) − (p2

− q2) = 2q2 . However, since d is odd it would

then have to divide p2 and q2 , forcing p and q to have a common factor (since any

prime factor of d would have to divide p and q ). This contradicts the assumption

that p and q had no common factors, so we conclude that (2pq,p2
− q2, p2

+ q2) is

primitive if p and q have opposite parity.

Case 2: Suppose p and q have the same parity, hence they are both odd since if

they were both even they would have the common factor of 2. Because p and q are

both odd, their sum and difference are both even and we can write p + q = 2P and

p−q = 2Q for some integers P and Q . Any common factor of P and Q would have

to divide P +Q =
p+q

2
+

p−q
2
= p and P −Q =

p+q
2
−

p−q
2
= q , so P and Q have no

common factors. In terms of P and Q our Pythagorean triple becomes

(a, b, c) = (2pq,p2
− q2, p2

+ q2)

= (2(P +Q)(P −Q), (P +Q)2 − (P −Q)2, (P +Q)2 + (P −Q)2)

= (2(P2
−Q2),4PQ,2(P2

+Q2))

= 2(P2
−Q2,2PQ,P2

+Q2)

After canceling the factor of 2 we get a new Pythagorean triple, with the first two

coordinates switched, and this one is primitive by Case 1 since P and Q can’t both be

odd, because if they were, then p = P +Q and q = P −Q would both be even, which

is impossible since they have no common factor.

From Cases 1 and 2 we can conclude that if we allow ourselves to switch the first

two coordinates, then we get all primitive Pythagorean triples from the formula by

restricting p and q to be of opposite parity and to have no common factors. ⊔⊓
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Rational Points on Other Quadratic Curves

The same technique we used to find the rational points on the circle x2
+y2

= 1

can also be used to find all the rational points on other quadratic curves Ax2
+Bxy+

Cy2
+Dx + Ey = F with integer or rational coefficients A , B , C , D , E , F , provided

that we can find a single rational point (x0, y0) on the curve to start the process. For

example, the circle x2
+y2

= 2 contains the rational points (±1,±1) and we can use

one of these as an initial point. Taking the point (1,1) ,

we would consider lines y − 1 =m(x − 1) of slope m

passing through this point. Solving this equation for

y and plugging into the equation x2
+ y2

= 2 would

produce a quadratic equation ax2
+ bx + c = 0 whose

coefficients are polynomials in the variable m , so these

coefficients would be rational whenever m is rational.

From the quadratic formula x =
(

−b±
√

b2 − 4ac
)

/2a we see that the sum of the two

roots is −b/a , a rational number if m is rational, so if one root is rational then the

other root will be rational as well. The initial point (1,1) on the curve x2
+y2

= 2 gives

x = 1 as one rational root of the equation ax2
+bx+c = 0, so for each rational value

of m the other root x will be rational as well. Then the equation y − 1 =m(x − 1)

implies that y will also be rational, and hence we obtain a rational point (x,y) on

the curve for each rational value of m . Conversely, if x and y are both rational then

obviously m = (y − 1)/(x − 1) will be rational. Thus one obtains a dense set of

rational points on the circle x2
+ y2

= 2, since m can be any rational number. An

exercise at the end of this chapter is to work out the formulas explicitly.

If instead of x2
+ y2

= 2 we consider the circle x2
+ y2

= 3 then there aren’t

any obvious rational points. In fact this circle contains no rational points at all. For if

there were a rational point, this would yield a solution of the equation a2
+ b2

= 3c2

by integers a , b , and c . We can assume a , b , and c have no common factor. Then

a and b can’t both be even, otherwise the left side of the equation would be even,

forcing c to be even, so a , b , and c would have a common factor of 2. To complete

the argument we look at the equation modulo 4. (This means that we consider the

remainders obtained after division by 4.) The square of an even number has the form

(2n)2 = 4n2 , which is 0 modulo 4, while the square of an odd number has the form

(2n + 1)2 = 4n2
+ 4n + 1, which is 1 modulo 4. Thus, modulo 4, the left side of

the equation is either 0+ 1, 1+ 0, or 1+ 1 since a and b are not both even. So the

left side is either 1 or 2 modulo 4. However, the right side is either 3 · 0 or 3 · 1
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modulo 4. We conclude that there can be no integer solutions of a2
+ b2

= 3c2 .

The technique we just used to show that a2
+ b2

= 3c2 has no integer solutions

can be used in many other situations as well. The underlying reasoning is that if an

equation with integer coefficients has an integer solution, then this gives a solution

modulo n for all numbers n . For solutions modulo n there are only a finite number

of possibilities to check, although for large n this is a large finite number. If one can

find a single value of n for which there is no solution modulo n , then the original

equation has no integer solutions. In theory, an equation could have solutions modulo

n for every number n and still have no actual integer solution, and there are cases

where this actually happens.

Rational Points on a Sphere

As another application of the same idea, we can find all the rational points on

the sphere x2
+ y2

+ z2
= 1, the triples (x,y, z) of rational numbers that satisfy

this equation. To do this we consider a line from the north pole (0,0,1) to a point

(u,v,0) in the xy -plane. This line intersects the sphere at some point (x,y, z) . We

want to find formulas expressing x , y , and z in terms of u and v .
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Suppose we look at the vertical plane containing the triangle ONQ . From our earlier

analysis of rational points on a circle of radius 1 we know that if the segment OQ

has length |OQ| = r , then |OP ′| =
2r
r2+1

and |PP ′| =
r2−1
r2+1

. From the right triangle

OBQ we see that u2
+ v2

= r 2 since u = |OB| and v = |BQ| . The triangle OBQ is

similar to the triangle OAP ′ . Since the length of OP ′ is
2

r2+1
times the length of OQ

we conclude from similar triangles that

x = |OA| =
2

r 2 + 1
|OB| =

2

r 2 + 1
·u =

2u

u2 + v2 + 1

and

y = |AP ′| =
2

r 2 + 1
|BQ| =

2

r 2 + 1
· v =

2v

u2 + v2 + 1

Also we have

z = |PP ′| =
r 2
− 1

r 2 + 1
=
u2
+ v2

− 1

u2 + v2 + 1

Summarizing, we have expressed x , y , and z in terms of u and v by the formulas

x =
2u

u2 + v2 + 1
y =

2v

u2 + v2 + 1
z =

u2
+ v2

− 1

u2 + v2 + 1

These formulas imply that we get a rational point (x,y, z) on the sphere x2
+y2

+z2
=

1 for each pair of rational numbers (u,v) . We get all rational points on the sphere in

this way (except for the north pole (0,0,1) , of course) since it is possible to express

u and v in terms of x , y , and z by the formulas

u =
x

1− z
v =

y

1− z

which one can easily verify by substituting into the previous formulas.

Here is a short table giving a few rational points on the sphere and the corre-

sponding integer solutions of the equation a2
+ b2

+ c2
= d2 :

(u,v) (x,y, z) (a, b, c, d)

(1,1) (2/3,2/3,1/3) (2,2,1,3)

(2,2) (4/9,4/9,7/9) (4,4,7,9)

(1,3) (2/11,6/11,9/11) (2,6,9,11)

(2,3) (2/7,3/7,6/7) (2,3,6,7)

(1,4) (1/9,4/9,8/9) (1,4,8,9)

As with rational points on the circle x2
+ y2

= 1, rational points on the sphere

x2
+y2

+ z2
= 1 are dense, so there are lots of them all over on the sphere.

In linear algebra courses one is often called upon to create unit vectors (x,y, z)

by taking a given vector and rescaling to have length 1 by dividing it by its length.
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For example, the vector (1,1,1) has length
√

3 so the corresponding unit vector is

(1/
√

3,1/
√

3,1/
√

3) . It is rare that this process produces unit vectors having rational

coordinates, but we now have a method for creating as many rational unit vectors as

we like.

Incidentally, there is a name for the correspondence we have described between

points (x,y, z) on the unit sphere and points (u,v) in the plane: it is called stereo-

graphic projection. One can think of the sphere and the plane as being made of clear

glass, and one puts one’s eye at the north pole of the sphere and looks downward

and outward in all directions to see points on the sphere projected onto points in

the plane, and vice versa. The north pole itself does not project onto any point in the

plane, but points approaching the north pole project to points approach infinity in the

plane, so one can think of the north pole as corresponding to an imaginary infinitely

distant “point" in the plane. This geometric viewpoint somehow makes infinity less

of a mystery, as it just corresponds to a point on the sphere, and points on a sphere

are not very mysterious. (Though in the early days of polar exploration the north pole

may have seemed very mysterious and infinitely distant!)

Pythagorean Triples and Quadratic Forms

There are many questions one can ask about Pythagorean triples (a, b, c) . For

example, we could begin by asking which numbers actually arise as the numbers a ,

b , or c in some Pythagorean triple. It is sufficient to answer the question just for

primitive Pythagorean triples, since the remaining ones are obtained just by multiply-

ing by arbitrary numbers. We know all primitive Pythagorean triples arise from the

formula

(a, b, c) = (2pq,p2
− q2, p2

+ q2)

where p and q have no common factor and are not both odd. Determining whether

a given number can be expressed in the form 2pq , p2
− q2 , or p2

+ q2 is a special

case of the general question of deciding when an equation Ap2
+ Bpq+Cq2

= n has

an integer solution p , q , for given integers A , B , C , and n . Expressions of the form

Ax2
+ Bxy + Cy2 are called quadratic forms. These will be the main topic studied

in Chapter 2, where we will develop some general theory addressing the question of

what values a quadratic form takes on when all the numbers involved are integers.

For now, let us just look at the special cases at hand.

First let us consider which numbers occur as a or b in Pythagorean triples

(a, b, c) . We certainly can’t realize the number 1 since this would say a2
+ 1 = c2 or
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1+ b2
= c2 but 1 is not the difference between the squares of any two positive inte-

gers. For numbers bigger than 1, if we look at the earlier table of Pythagorean triples

we see that all the numbers up to 15 can be realized as a or b in primitive triples

except for 2, 6, 10, and 14. This might lead us to guess that the numbers realizable

as a or b in primitive triples are the numbers not congruent to 2 modulo 4. This is

indeed true, and can be proved as follows. First note that 2pq is even and p2
− q2 is

odd (otherwise both a and b would be even, violating primitivity). Every odd number

bigger than 1 is expressible in the form p2
− q2 since 2k + 1 = (k + 1)2 − k2 , so in

fact every odd number is the difference between two consecutive squares. Note that

taking p = k+1 and q = k does yield a primitive triple since k and k+1 always have

opposite parity and no common factors. This takes care of realizing odd numbers.

For even numbers, they would have to be of the form 2pq , and by taking q = 1 we

realize any even number 2p . However, to have a primitive triple we have to have

p even since p must have opposite parity from q which is 1. Thus we realize the

numbers a = 4k by primitive triples but not the numbers a = 4k + 2. This is what

we claimed was true. To finish the story for a and b , note that a number a = 4k+ 2

which can’t be realized by a primitive triple can be realized by a nonprimitive triple,

at least if k ≥ 1, since we know we can realize the odd number 2k+ 1 if k ≥ 1, and

by doubling this we realize 4k+2. Summarizing this discussion, all numbers greater

than 2 can be realized as a or b in Pythagorean triples (a, b, c) .

Now let us ask which numbers c can occur in Pythagorean triples (a, b, c) , so we

are trying to find a solution of p2
+q2

= c for a given number c . Pythagorean triples

(p, q, r ) give solutions when c is equal to a square r 2 , but we are asking now about

arbitrary numbers c . It suffices to figure out which numbers c occur in primitive

triples (a, b, c) , since by multiplying the numbers c in primitive triples by arbitrary

numbers we get the numbers c in arbitrary triples. A look at the earlier table shows

that the numbers c that can be realized by primitive triples (a, b, c) seem to be fairly

rare: only 5, 13, 17, 25, 29, 37, 41, 53, 61, 65, and 85 occur in the table. These

are all odd, and in fact they are all congruent to 1 modulo 4. This always has to

be true because p and q are of opposite parity, so one of p2 and q2 is congruent

to 0 modulo 4 while the other is congruent to 1, hence p2
+ q2 is congruent to 1

modulo 4. More interesting is the fact that most of the numbers on the list are prime

numbers, and the ones that aren’t prime are products of earlier primes in the list:

25 = 5 · 5, 65 = 5 · 13, 85 = 5 · 17. From this somewhat slim evidence one might

conjecture that the numbers c occurring in primitive Pythagorean triples are exactly

the numbers that are products of primes congruent to 1 modulo 4. The first prime
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satisfying this condition that isn’t on the original list is 73, and this is realized as

p2
+ q2

= 82
+ 32 , in the triple (48,55,73) . The next two primes congruent to 1

modulo 4 are 89 = 82
+ 52 and 97 = 92

+ 42 , so the conjecture continues to look

good. Proving the general conjecture is not easy, however, and we will take up this

question in Chapter 2 when we fully answer the question of which numbers can be

expressed as the sum of two squares.

Another question one can ask about Pythagorean triples is, how many are there

where two of the three numbers differ by only 1? In the earlier table there are

several: (3,4,5) , (5,12,13) , (7,24,25) , (20,21,29) , (9,40,41) , (11,60,61) , and

(13,84,85) . As the pairs of numbers that are adjacent get larger, the correspond-

ing right triangles are either approximately 45-45-90 right triangles as with the triple

(20,21,29) , or long thin triangles as with (13,84,85) . To analyze the possibilities,

note first that if two of the numbers in a triple (a, b, c) differ by 1 then the triple has

to be primitive, so we can use our formula (a, b, c) = (2pq,p2
−q2, p2

+q2) . If b and

c differ by 1 then we would have (p2
+q2)−(p2

−q2) = 2q2
= 1 which is impossible.

If a and c differ by 1 then we have p2
+q2

−2pq = (p−q)2 = 1 so p−q = ±1, and

in fact p − q = +1 since we have to have p > q in order for b = p2
− q2 to be pos-

itive. Thus we get the infinite sequence of solutions (p, q) = (2,1), (3,2), (4,3), · · ·

with corresponding triples (4,3,5), (12,5,13), (24,7,25), · · · . Note that these are the

same triples we obtained earlier that realize all the odd values b = 3,5,7, · · · .

The remaining case is that a and b differ by 1. Thus we have the equation

p2
− 2pq− q2

= ±1. The left side doesn’t factor using integer coefficients, so it’s not

so easy to find integer solutions this time. In the table there are only the two triples

(4,3,5) and (20,21,29) , with (p, q) = (2,1) and (5,2) . After some trial and error one

could find the next solution (p, q) = (12,5) which gives the triple (120,119,169) . Is

there a pattern in the solutions (2,1), (5,2), (12,5)? One has the numbers 1,2,5,12,

and perhaps it isn’t too much of a stretch to notice that the third number is twice the

second plus the first, while the fourth number is twice the third plus the second. If

this pattern continued, the next number would be 29 = 2 · 12 + 5, giving (p, q) =

(29,12) , and this does indeed satisfy p2
− 2pq − q2

= 1, yielding the Pythagorean

triple (696,697,985) . These numbers are increasing rather rapidly, and the next case

(p, q) = (70,29) yields an even bigger Pythagorean triple (4060,4059,5741) . Could

there be other solutions of p2
−2pq−q2

= ±1 with smaller numbers that we missed?

We will develop tools in Chapter 2 to find all the integer solutions, and it will turn out

that the sequence we have just discovered gives them all.
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Although the quadratic form p2
− 2pq − q2 does not factor using integer coeffi-

cients, it can be simplified slightly be rewriting it as (p−q)2−2q2 . Then if we change

variables by setting
x = p − q

y = q

we obtain the quadratic form x2
− 2y2 . Finding integer solutions of x2

− 2y2
= n is

equivalent to finding integer solutions of p2
− 2pq − q2

= n since integer values of

p and q give integer values of x and y , and conversely, integer values of x and y

give integer values of p and q since when we solve for p and q in terms of x and y

we again get equations with integer coefficients:

p = x +y

q = y

Thus the quadratic forms p2
− 2pq − q2 and x2

− 2y2 are completely equivalent,

and finding integer solutions of p2
− 2pq − q2

= ±1 is equivalent to finding integer

solutions of x2
− 2y2

= ±1.

The equation x2
−2y2

= ±1 is an instance of the equation x2
−Dy2

= ±1 which

is known as Pell’s equation. This is a very famous equation in number theory which

has arisen in many different contexts going back hundreds of years. We will develop

techniques for finding all integer solutions of Pell’s equation for arbitrary values of

D in Chapter 2. It is interesting that certain fairly small values of D can force the

solutions to be quite large. For example for D = 61 the smallest positive integer

solution of x2
− 61y2

= 1 is the rather large pair

(x,y) = (1766319049,226153980)

As far back as the eleventh and twelfth centuries mathematicians in India knew how to

find this solution. It was rediscovered in the seventeenth century by Fermat in France,

who also gave the smallest solution of x2
− 109y2

= 1, the even larger pair

(x,y) = (158070671986249,15140424455100)

The way that the size of the smallest solution of x2
− Dy2

= 1 depends upon D is

very erratic and is still not well understood today.

Pythagorean Triples and Complex Numbers

There is another way of looking at Pythagorean triples that involves complex

numbers, surprisingly enough. The starting point here is the observation that a2
+b2
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can be factored as (a + bi)(a − bi) where i =
√

−1. If we rewrite the equation

a2
+ b2

= c2 as (a + bi)(a − bi) = c2 then since the right side of the equation is a

square, we might wonder whether each term on the left side would have to be a square

too. For example, in the case of the triple (3,4,5) we have (3+ 4i)(3− 4i) = 52 with

3+4i = (2+i)2 and 3−4i = (2−i)2 . So let us ask optimistically whether the equation

(a+bi)(a−bi) = c2 can be rewritten as (p+qi)2(p−qi)2 = c2 with a+bi = (p+qi)2

and a−bi = (p−qi)2 . We might hope also that the equation (p+qi)2(p−qi)2 = c2

was obtained by simply squaring the equation (p + qi)(p − qi) = c . Let us see what

happens when we multiply these various products out:

a+ bi = (p + qi)2 = (p2
− q2)+ (2pq)i

hence a = p2
− q2 and b = 2pq

a− bi = (p − qi)2 = (p2
− q2)− (2pq)i

hence again a = p2
− q2 and b = 2pq

c = (p + qi)(p − qi) = p2
+ q2

Thus we have miraculously recovered the formulas for Pythagorean triples that we

obtained earlier by geometric means (with a and b switched, which doesn’t really

matter):

a = p2
− q2 b = 2pq c = p2

+ q2

Of course, our derivation of these formulas just now depended on several assump-

tions that we haven’t justified, but it does suggest that looking at complex numbers of

the form a+bi where a and b are integers might be a good idea. There is a name for

complex numbers of this form a + bi with a and b integers. They are called Gaus-

sian integers, since the great mathematician and physicist C.F.Gauss made a thorough

algebraic study of them some 200 years ago. We will develop the basic properties

of Gaussian integers in Chapter 3, in particular explaining why the derivation of the

formulas above is valid.

Diophantine Equations

Equations like x2
+y2

= z2 or x2
−Dy2

= 1 that involve polynomials with inte-

ger coefficients, and where the solutions sought are required to be integers, are called

Diophantine equations after the Greek mathematician Diophantus (ca. 250 A.D.) who

wrote a book about these equations that was very influential when European mathe-

maticians started to consider this topic much later in the 1600s. Usually Diophantine

equations are very hard to solve because of the restriction to integer solutions. The
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first really interesting case is quadratic Diophantine equations. By the year 1800 there

was quite a lot known about the quadratic case, and we will be focusing on this case

in this book.

Diophantine equations of higher degree than quadratic are much more challeng-

ing to understand. Probably the most famous one is xn+yn = zn where n is a fixed

integer greater than 2. When the French mathematician Fermat in the 1600s was read-

ing about Pythagorean triples in his copy of Diophantus’ book he made a marginal note

that, in contrast with the equation x2
+ y2

= z2 , the equation xn + yn = zn has no

solutions with positive integers x,y, z when n > 2 and that he had a marvelous proof

which unfortunately the margin was too narrow to contain. This is one of many state-

ments that he claimed were true but never wrote proofs of for public distribution, nor

have proofs been found among his manuscripts. Over the next century other math-

ematicians discovered proofs for all his other statements, but this one was far more

difficult to verify. The issue is clouded by the fact that he only wrote this statement

down the one time, whereas all his other important results were stated numerous

times in his correspondence with other mathematicians of the time. So perhaps he

only briefly believed he had a proof. In any case, the statement has become known

as Fermat’s Last Theorem. It was finally proved in the 1990s by Andrew Wiles, using

some very deep mathematics developed over the preceding couple decades.

Just as finding integer solutions of x2
+y2

= z2 is equivalent to finding rational

points on the circle x2
+ y2

= 1, so finding integer solutions of xn + yn = zn is

equivalent to finding rational points on the curve xn + yn = 1. For even values of

n > 2 this curve looks like a flattened out circle while for odd n it has a rather different

shape, extending out to infinity in the second and fourth quadrants, asymptotic to the

line y = −x :

Fermat’s Last Theorem is equivalent to the statement that these curves have no ra-

tional points except their intersections with the coordinate axes, where either x or
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y is 0. It is curious that these curves only contain a finite number of rational points

(either two points or four points, depending on whether n odd or even) whereas

quadratic curves like x2
+ y2

= n either contain no rational points or an infinite

dense set of rational points.

Exercises

1. (a) Make a list of the 16 primitive Pythagorean triples (a, b, c) with c ≤ 100,

regarding (a, b, c) and (b,a, c) as the same triple.

(b) How many more would there be if we allowed nonprimitive triples?

(c) How many triples (primitive or not) are there with c = 65?

2. Show that there are no Pythagorean triples (a, b, c) with a being a positive integer

multiple of b , or vice versa. (“Show" means “Prove", that is, give a logical argument

why the statement is true.)

3. (a) Find all the positive integer solutions of x2
−y2

= 512 by factoring x2
−y2 as

(x + y)(x −y) and considering the possible factorizations of 512.

(b) Show that the equation x2
−y2

= n has only a finite number of integer solutions

for each value of n .

(c) Find a value of n for which the equation x2
− y2

= n has at least 100 different

positive integer solutions.

4. Show that there are only a finite number of Pythagorean triples (a, b, c) with a , b ,

or c equal to a given number n . (Part of the previous problem may be useful.)

5. Find an infinite sequence of Pythagorean triples where two of the numbers in each

triple differ by 2.

6. Find a right triangle whose sides have integer lengths and whose acute angles are

close to 30 and 60 degrees by first finding the irrational value of r that corresponds to

a right triangle with acute angles exactly 30 and 60 degrees, then choosing a rational

number close to this irrational value of r .

7. Find a right triangle whose sides have integer lengths and where one of the nonhy-

potenuse sides is approximately twice as long as the other, using a method like the

one in the preceding problem. (One possible answer might be the (8,15,17) triangle,

or a triangle similar to this, but you should do better than this.)

8. Find a rational point on the sphere x2
+y2

+z2
= 1 whose x , y , and z coordinates

are nearly equal. (You can decide what “nearly equal" means, but a point like (
2
3
,

2
3
,

1
3
)

doesn’t qualify.)
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9. (a) Derive formulas that give all the rational points on the circle x2
+ y2

= 2 in

terms of a rational parameter m , the slope of the line through the point (1,1) on the

circle. The calculations may be a little messy, but they work out fairly nicely in the

end to give

x =
m2

− 2m− 1

m2 + 1
, y =

−m2
− 2m+ 1

m2 + 1

(b) Using these formulas, find five different rational points on the circle in the first

quadrant, and hence five solutions of a2
+ b2

= 2c2 with positive integers a , b , c .

10. (a) Find formulas that give all the rational points on the upper branch of the

hyperbola y2
− x2

= 1.

(b) Can you find any relationship between these rational points and Pythagorean

triples?

11. (a) For integers x , what are the possible values of x2 modulo 8?

(b) Show that the equation x2
− 2y2

= ±3 has no integer solutions by considering

this equation modulo 8.

(c) Show that there are no Pythagorean triples (a, b, c) with a and b differing by 3.

12. Show that for every Pythagorean triple (a, b, c) the product abc must be divisible

by 60. (It suffices to show that abc is divisible by 3, 4, and 5.)


