A family of self-avoiding walks on the Sierpiński gasket

Takafumi Otsuka

Department of Mathematics and Information Sciences
Tokyo Metropolitan University

6th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals
Cornell University, Ithaca
June 2017
Outline

1. Pre-Sierpinski gasket

2. A set of probability measures with multi parameter

3. Scaling limit

4. Self-avoiding property
1. Pre-Sierpiński gasket

Let F_0 be a triangle $\triangle Oab$, F_N be the graph with edges of length 2^{-N}, and $F = \text{cl}(\bigcup_{N=0}^{\infty} F_N)$ be a (finite) Sierpiński gasket.

- Next, define self-avoiding paths on F_N and probability measures on the path spaces inductively.
Self-avoiding paths

\(w \): self-avoiding path on \(F_N \) if

\[
\begin{align*}
 w(0) &= O, \quad (w(i), w(i + 1)) \in \{ \text{edges on } F_N \}, \\
 w(i) &\in \{ \text{vertices on } F_N \}, \quad w(i) \neq w(j) \ (i \neq j), \quad \text{and } w(\ell(w)) = a.
\end{align*}
\]

\[
a = \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right)
\]

\(O = (0, 0) \quad b = (1, 0) \)
2. A set of probability measures with multi parameter

Self-avoiding paths on F_1:

Given $p_i, q_i \geq 0$, $\sum_{i=1}^{10} p_i = 1$, $\sum_{i=1}^{10} q_i = 1$, $p_8, p_9, p_{10} = 0$, define

$$P^1_1[w_i] = p_i, \quad P^2_1[w_i] = q_i.$$
Branching

Idea: P_{N+1}^1 and P_{N+1}^2 are obtained by the following branching.

Following this idea, define $X_N(w)(j) = w(j)$, $j = 0, 1, \ldots, \ell(w)$, where w is a self-avoiding path on F_N.

(Suppose that the first branching follows P_1^1.)
Example

Loop-erased random walk (defined by erasing loops in descending order of the size of loops from a simple random walk) on F_N (Hattori, Mizuno 14’) is included as a special case.

$$p_1 = \frac{1}{2}, \ p_2 = p_3 = p_7 = \frac{2}{15}, \ p_4 = p_5 = p_6 = \frac{1}{30}, \ p_8 = p_9 = p_{10} = 0,$$

$$q_1 = \frac{1}{9}, \ q_2 = q_3 = q_7 = \frac{11}{90}, \ q_4 = q_5 = q_6 = \frac{2}{45}, q_7 = \frac{8}{45}, q_8 = \frac{2}{9},$$

$$q_9 = q_{10} = \frac{1}{18}.$$

Additionally, ‘standard’ self-avoiding walk (HHK 91’), loop-erased self-repelling walk (HOO, 17’) are included as special cases respectively (we omit details here).

Assigning different values to p_i, q_i gives different SAWs.
3. Scaling limit

Let \(p = (p_1, \ldots, p_{10}, q_1, \ldots, q_{10}) \) and \(X_N(w)(t) = w(t), \ t \in [0, \infty) \): a self avoiding walk on \(F_N \) (linear interpolated).

Theorem (scaling limit)

For any \(p \), there exists \(\lambda = \lambda(p) (2 \leq \lambda \leq 3) \) such that

\[
X_N(\lambda^N t) \rightarrow X(t) \quad \text{a.s. as } \ N \rightarrow \infty.
\]

and \(d_H = \log \lambda / \log 2 \) (Hausdorff dimension of the path) with probability 1.

- \(d_H \) takes any values from 1 to \(\log 3 / \log 2 \).
- \(X_N \) is self-avoiding, but \(X = X(p) \) is not necessarily self-avoiding and the number of triangles produced at each branching affects the self-avoiding property.
Two extream cases

- If $p_1 + p_2 + p_3 + p_4 = q_1 + q_2 + q_3 + q_4 = 1$, then, with probability 1, $d_H = 1$ and X is an uniform linear motion.

- If $p_5 + p_6 + p_7 = q_5 + \cdots + q_{10} = 1$, then, with probability 1, $d_H = \log 3/\log 2$, that is, X fills the state space (the SG), and the speed of the motion is constant. We call it Peano curve.
4. Self-avoiding property

Theorem (Self-avoiding)

If $p_5 + p_6 + p_7 < 1$, $q_5 + \cdots + q_{10} < 1$, then the scaling limit X is self-avoiding.
Asymptotic behavior

Suppose that $p_5 + p_6 + p_7 < 1, q_5 + \cdots + q_{10} < 1$. In this case, we have some results about asymptotic behavior.

Theorem (Short time behavior)

Let $\gamma = \log 2 / \log \lambda$. *There exist positive constants* C_1, C_2 *such that for all* $s > 0$

$$C_1 \leq \lim_{t \to 0} \frac{E[|X(t)|^s]}{t^{\gamma s}} \leq C_2.$$

Theorem (Laws of the iterated logarithm)

There exist positive constants C_3, C_4 *such that*

$$C_3 \leq \limsup_{t \to 0} \frac{|X(t)|}{t^{\gamma} (\log \log (1/t))^{1-\gamma}} \leq C_4 \quad a.s.$$
Self-intersections

Theorem

If \(p_5 + p_6 + p_7 = 1 \), then, with probability 1, the scaling limit \(X \) has infinitely many self-intersections.

If \(p_7 < 1 \) and \(q_5 + \cdots + q_{10} < 1 \), then \(d_H < \log 3 / \log 2 \).

Example:

If the branching is \(w_6 \to (w_5, w_6, w_7) \to \ldots \), then following every branchings in the sets of triangles including \(y \) follows \(P_1^1 \).

Iterating this, therefore, \(X \) reaches \(y \) from opposite side of \(x \).
Conclusion

- Using the branching method, we have studied a family of self-avoiding walks on the SG.
- The limit is divided into four types in the meaning of shape.
- The case that the limit have intersections but does not fill the state space is not included in previous models.
- For the self-avoiding case, we have studied asymptotic behavior.

References
