Ollivier Ricci curvature for general graph Laplacians

Radosław K. Wojciechowski

York College and the Graduate Center
City University of New York

6th Cornell Conference on Analysis, Probability and Mathematical Physics on Fractals
Cornell University
June 17, 2017
joint work with Florentin Münch (University of Postdam)
joint work with Florentin Münch (University of Postdam)

Idea: Extend the notion of Ricci curvature introduced by Ollivier and modified by Lin-Liu-Yau to the case of general (possibly unbounded) graph Laplacians. In this setting new phenomena, which do not appear in the case of bounded operators, such as stochastic completeness can be explored.
Outline

- Framework (weighted graphs, Laplacians, curvature)
- Semigroup characterization
- Criteria for stochastic completeness
- Criteria for finiteness
Let V be a countable set of vertices. Let $m : V \to (0, \infty)$ be a positive vertex measure.
Let V be a countable set of vertices. Let $m : V \rightarrow (0, \infty)$ be a positive vertex measure. Let $w : V \times V \rightarrow [0, \infty)$ be an edge weight on V which, for all $x, y \in V$, satisfies
Let V be a countable set of vertices. Let $m : V \to (0, \infty)$ be a positive vertex measure. Let $w : V \times V \to [0, \infty)$ be an edge weight on V which, for all $x, y \in V$, satisfies

1. $w(x, x) = 0$ (no loops)
Let V be a countable set of vertices. Let $m : V \to (0, \infty)$ be a positive vertex measure. Let $w : V \times V \to [0, \infty)$ be an edge weight on V which, for all $x, y \in V$, satisfies

1. $w(x, x) = 0$ (no loops)
2. $w(x, y) = w(y, x)$ (symmetry)
Let V be a countable set of vertices. Let $m : V \to (0, \infty)$ be a positive vertex measure. Let $w : V \times V \to [0, \infty)$ be an edge weight on V which, for all $x, y \in V$, satisfies

1. $w(x, x) = 0$ (no loops)
2. $w(x, y) = w(y, x)$ (symmetry)
3. $|\{y \mid w(x, y) > 0\}| < \infty$ (local finiteness).
Let V be a countable set of vertices. Let $m : V \to (0, \infty)$ be a positive vertex measure. Let $w : V \times V \to [0, \infty)$ be an edge weight on V which, for all $x, y \in V$, satisfies

1. $w(x, x) = 0$ (no loops)
2. $w(x, y) = w(y, x)$ (symmetry)
3. $|\{y \mid w(x, y) > 0\}| < \infty$ (local finiteness).

If $w(x, y) > 0$ we say that x and y are connected by a weighted edge or are neighbors and write $x \sim y$ in this case. We call $G = (V, w, m)$ a weighted graph.
Let V be a countable set of vertices. Let $m : V \to (0, \infty)$ be a positive vertex measure. Let $w : V \times V \to [0, \infty)$ be an edge weight on V which, for all $x, y \in V$, satisfies

1. $w(x, x) = 0$ (no loops)
2. $w(x, y) = w(y, x)$ (symmetry)
3. $|\{y \mid w(x, y) > 0\}| < \infty$ (local finiteness).

If $w(x, y) > 0$ we say that x and y are connected by a weighted edge or are neighbors and write $x \sim y$ in this case. We call $G = (V, w, m)$ a weighted graph.

We let

$$\text{Deg}(x) = \frac{1}{m(x)} \sum_{y \in V} w(x, y)$$

denote the weighted degree of a vertex x.
We assume that w is connected in the sense that for any two vertices x and y there exists a sequence $(x_k)_{k=0}^n$ with $x_0 = x$, $x_n = y$ and $x_k \sim x_{k+1}$ for $k = 0, 1, \ldots, n - 1$. Such a sequence is called a path connecting x and y.

We denote by $d(x, y)$ the usual combinatorial graph metric, that is, $d(x, y)$ is the least number of edges in a path connecting x and y.

We let $C(V) = \{f : V \to \mathbb{R}\}$ and let $\Delta : C(V) \to C(V)$ be given by $\Delta f(x) = \frac{1}{m(x)} \sum_{y \in V} w(x, y)(f(y) - f(x))$.

Δ is called the Laplacian associated to the weighted graph.
We assume that \(w \) is connected in the sense that for any two vertices \(x \) and \(y \) there exists a sequence \((x_k)_{k=0}^n \) with \(x_0 = x \), \(x_n = y \) and \(x_k \sim x_{k+1} \) for \(k = 0, 1, \ldots, n-1 \). Such a sequence is called a path connecting \(x \) and \(y \).

We denote by \(d(x, y) \) the usual combinatorial graph metric, that is, \(d(x, y) \) is least number of edges in a path connecting \(x \) and \(y \).
We assume that w is connected in the sense that for any two vertices x and y there exists a sequence $(x_k)_{k=0}^n$ with $x_0 = x$, $x_n = y$ and $x_k \sim x_{k+1}$ for $k = 0, 1, \ldots, n - 1$. Such a sequence is called a path connecting x and y.

We denote by $d(x, y)$ the usual combinatorial graph metric, that is, $d(x, y)$ is least number of edges in a path connecting x and y.

We let $C(V) = \{ f : V \to \mathbb{R} \}$ and let $\Delta : C(V) \to C(V)$ be given by

$$\Delta f(x) = \frac{1}{m(x)} \sum_{y \in V} w(x, y)(f(y) - f(x)).$$

Δ is called the Laplacian associated to the weighted graph.
Examples: (Normalized) Graph Laplacian

We give two examples based on standard edge weights and two commonly appearing measures.

Example

Let $w(x, y) \in \{0, 1\}$.

1. If $m = 1$, then Δ is called the **graph Laplacian** given by

$$\Delta f(x) = \sum_{y \sim x} (f(y) - f(x)).$$
Examples: (Normalized) Graph Laplacian

We give two examples based on standard edge weights and two commonly appearing measures.

Example

Let \(w(x, y) \in \{0, 1\} \).

1. If \(m = 1 \), then \(\Delta \) is called the graph Laplacian given by

\[
\Delta f(x) = \sum_{y \sim x} (f(y) - f(x)).
\]

2. If \(m(x) = d_x := \sum_{y \in X} w(x, y) = |\{y \mid y \sim x\}| \), then \(\Delta \) is called the normalized Laplacian given by

\[
\Delta f(x) = \frac{1}{d_x} \sum_{y \sim x} (f(y) - f(x)).
\]
For $\varepsilon > 0$, we let

$$m_x^\varepsilon(y) = 1_y(x) + \varepsilon \Delta 1_y(x).$$
For $\varepsilon > 0$, we let

$$m_\varepsilon^x(y) = 1_y(x) + \varepsilon \Delta 1_y(x).$$

By a direct calculation, one gets that

$$m_\varepsilon^x(y) = \begin{cases} 1 - \varepsilon \deg(x) & : y = x \\ \varepsilon \frac{w(x,y)}{m(x)} & : \text{otherwise} \end{cases}$$

where $\deg(x) = \frac{1}{m(x)} \sum_{y \in V} w(x,y)$. In particular, if ε is small enough, then m_ε^x is a probability measure.
For $\varepsilon > 0$, we let

$$m^\varepsilon_x(y) = 1_y(x) + \varepsilon \Delta 1_y(x).$$

By a direct calculation, one gets that

$$m^\varepsilon_x(y) = \begin{cases}
1 - \varepsilon \text{Deg}(x) & : y = x \\
\varepsilon \frac{w(x,y)}{m(x)} & : \text{otherwise}
\end{cases}$$

where $\text{Deg}(x) = \frac{1}{m(x)} \sum_{y \in V} w(x,y)$. In particular, if ε is small enough, then m^ε_x is a probability measure.

For probability measures, the transportation distance can be defined as follows:

$$W(m^\varepsilon_x, m^\varepsilon_y) = \sup_{f \in \text{Lip}(1)} \sum_{z \in V} f(z)(m^\varepsilon_x(z) - m^\varepsilon_y(z))$$

where $\text{Lip}(1) = \{ f \in C(V) \mid |f(u) - f(v)| \leq d(u,v) \}$ are the functions with Lipschitz constant 1.
A direct calculation then gives that

\[W(m_x^\varepsilon, m_y^\varepsilon) = \sup_{f \in \text{Lip}(1)} (f(x) + \varepsilon \Delta f(x) - (f(y) + \varepsilon \Delta f(y)) \]

\[= \sup_{f \in \text{Lip}(1)} \nabla_{xy}(f + \varepsilon \Delta f) d(x, y) \]

where \(\nabla_{xy} f := (f(x) - f(y))/d(x, y) \).
A direct calculation then gives that

\[W(m_x^\varepsilon, m_y^\varepsilon) = \sup_{f \in \text{Lip}(1)} (f(x) + \varepsilon \Delta f(x) - (f(y) + \varepsilon \Delta f(y)) \]

\[= \sup_{f \in \text{Lip}(1)} \nabla_{xy}(f + \varepsilon \Delta f)d(x, y) \]

where \(\nabla_{xy}f := (f(x) - f(y))/d(x, y) \).

For \(x \neq y \), let

\[\kappa_{\varepsilon} = 1 - \frac{W(m_x^\varepsilon, m_y^\varepsilon)}{d(x, y)} \]

and define

\[\kappa(x, y) := \lim_{\varepsilon \to 0^+} \frac{\kappa_{\varepsilon}}{\varepsilon} \]

as the *Ricci curvature* at vertices \(x \) and \(y \).
A direct calculation then gives that

\[
W(m^\varepsilon_x, m^\varepsilon_y) = \sup_{f \in \text{Lip}(1)} \left(f(x) + \varepsilon \Delta f(x) - (f(y) + \varepsilon \Delta f(y)) \right)
\]

\[
= \sup_{f \in \text{Lip}(1)} \nabla_{xy}(f + \varepsilon \Delta f) d(x, y)
\]

where \(\nabla_{xy} f := (f(x) - f(y))/d(x, y) \).

For \(x \neq y \), let

\[
\kappa_\varepsilon = 1 - \frac{W(m^\varepsilon_x, m^\varepsilon_y)}{d(x, y)}
\]

and define

\[
\kappa(x, y) := \lim_{\varepsilon \to 0^+} \frac{\kappa_\varepsilon}{\varepsilon}
\]

as the \textit{Ricci curvature} at vertices \(x \) and \(y \).

Ollivier (2009) introduces this idea for Markov chains on metric spaces and looks at it for the special case of unweighted graphs for \(\varepsilon = 0 \) and \(\varepsilon = 1/2 \). Lin-Liu-Yau (2011) introduce this formula for the normalized graph Laplacian. In this case, \(\text{Deg} = 1 \).
Our first result characterizes a lower curvature bound via the heat semigroup.
Our first result characterizes a lower curvature bound via the heat semigroup. For non-negative, bounded u_0 and $t \geq 0$, we denote by $u(x, t) = P_t u_0$ the minimal non-negative solution of the heat equation

$$\begin{cases}
\Delta u(x, t) = \partial_t u(x, t) & x \in V, \ t \geq 0 \\
u(x, 0) = f(x) & x \in V.
\end{cases}$$
Our first result characterizes a lower curvature bound via the heat semigroup. For non-negative, bounded u_0 and $t \geq 0$, we denote by $u(x, t) = P_t u_0$ the minimal non-negative solution of the heat equation

$$\begin{cases}
\Delta u(x, t) = \partial_t u(x, t) & x \in V, \ t \geq 0 \\
u(x, 0) = f(x) & x \in V.
\end{cases}$$

We say that a graph is Feller if P_t maps functions vanishing at infinity to functions vanishing at infinity.
Our first result characterizes a lower curvature bound via the heat semigroup. For non-negative, bounded u_0 and $t \geq 0$, we denote by $u(x, t) = P_t u_0$ the minimal non-negative solution of the heat equation

$$\begin{cases} \Delta u(x, t) = \partial_t u(x, t) & x \in V, t \geq 0 \\ u(x, 0) = f(x) & x \in V. \end{cases}$$

We say that a graph is **Feller** if P_t maps functions vanishing at infinity to functions vanishing at infinity. We let $\|\nabla f\|_\infty := \sup_{x \neq y} |\nabla_{xy} f|$ denote the Lipshitz constant of a function. We write $\text{Ric}(G) \geq K$ if $\kappa(x, y) \geq K$ for all $x, y \in V$. With these notations, we can state our first result as a characterization of lower curvature bounds for graphs which satisfy the Feller property.
Let G be a weighted graph which satisfies the Feller property. The following statements are equivalent:

(i) $\text{Ric}(G) \geq K$.

(ii) For all bounded functions f and all $t > 0$

$$\|\nabla P_t f\|_\infty \leq e^{-Kt} \|\nabla f\|_\infty.$$
Semigroup characterization – continued

Theorem

Let G be a weighted graph which satisfies the Feller property. The following statements are equivalent:

(i) $\text{Ric}(G) \geq K$.

(ii) For all bounded functions f and all $t > 0$

$$\|\nabla P_t f\|_\infty \leq e^{-K t} \|\nabla f\|_\infty.$$

This theorem gives an analogue to a result for Riemannian manifolds by Renesse and Sturm (2004). They do not assume the Feller property; however, in the manifold case a lower Ricci curvature bound immediately implies the Feller property which is not true for graphs.
Calculating the Ricci curvature

Our next result is a limit-free formula for the curvature which makes the curvature easy to calculate in some cases.

Theorem

Let $x \neq y$, then

$$\kappa(x, y) = \inf_{f \in \text{Lip}(1)} \nabla_{xy} \Delta f.$$
Calculating the Ricci curvature

Our next result is a limit-free formula for the curvature which makes the curvature easy to calculate in some cases.

Theorem

Let \(x \neq y \), then

\[
\kappa(x, y) = \inf_{f \in \text{Lip}(1)} \frac{\nabla_{yx} \Delta f}{\nabla_{xy} f} = 1.
\]

Idea of proof: To show that \(\frac{1}{\varepsilon} \kappa(\varepsilon, x, y) \leq \inf_{f \in \text{Lip}(1)} \nabla_{xy} \Delta f \) is easy. For the other inequality, use a cutoff argument to restrict to a compact set and create a minimizer function.
Calculating the Ricci curvature

Our next result is a limit-free formula for the curvature which makes the curvature easy to calculate in some cases.

Theorem

Let \(x \neq y \), then

\[
\kappa(x, y) = \inf_{f \in \text{Lip}(1)} \frac{\nabla_{yx} \Delta f}{\nabla_{xy} \Delta f}.
\]

Idea of proof: To show that \(\frac{1}{\varepsilon} \kappa_{\varepsilon}(x, y) \leq \inf_{f \in \text{Lip}(1)} \frac{\nabla_{xy} \Delta f}{\nabla_{yx} \Delta f} \) is easy.

For the other inequality, use a cutoff argument to restrict to a compact set and create a minimizer function.

Example

Line graphs Let \(V = \mathbb{N}_0 \) with \(w(m, n) = 0 \) if \(|m - n| \neq 1 \). If \(f(n) = n \) and \(r < R \), then

\[
\kappa(r, R) = \nabla_{rR} \Delta f = \frac{\Delta f(r) - \Delta f(R)}{R - r}.
\]
We now fix a reference vertex x_0 and let S_r denote the sphere of radius r about x_0. We let

$$\kappa(r) = \min_{y \in S_r} \max_{x \in S_{r-1}} \kappa(x, y)$$

where $x \sim y$, denote the sphere curvature for $r \geq 1$.

Our main technical tool for the results below is the following Laplace comparison theorem.

Theorem

If $f(x) = d(x, x_0)$, then

$$\Delta f(x) \leq \Delta g(x_0) - f(x) \sum_{r=1}^{\infty} \kappa(r)$$

Idea of proof: by induction on R and using the formula for computing the curvature above.

Note: The inequality above is sharp on line graphs.

Radosław K. Wojciechowski

Ollivier Ricci curvature
We now fix a reference vertex x_0 and let S_r denote the sphere of radius r about x_0. We let

$$\kappa(r) = \min_{y \in S_r} \max_{x \in S_{r-1}} \kappa(x, y)$$

denote the sphere curvature for $r \geq 1$.

Our main technical tool for the results below is the following Laplace comparison theorem.

Theorem

If $f(x) = d(x, x_0)$, then

$$\Delta f(x) \leq \text{Deg}(x_0) - \sum_{r=1}^{f(x)} \kappa(r).$$

Idea of proof: by induction on R and using the formula for computing the curvature above.

Note: The inequality above is sharp on line graphs.
Laplace comparison

We now fix a reference vertex x_0 and let S_r denote the sphere of radius r about x_0. We let

$$
\kappa(r) = \min_{y \in S_r} \max_{x \in S_{r-1}} \kappa(x, y)
$$

denote the *sphere curvature* for $r \geq 1$.

Our main technical tool for the results below is the following Laplace comparison theorem.

Theorem

If $f(x) = d(x, x_0)$, then

$$
\Delta f(x) \leq \text{Deg}(x_0) - \sum_{r=1}^{f(x)} \kappa(r).
$$

Idea of proof: by induction on R and using the formula for computing the curvature above.

Note: The inequality above is sharp on line graphs.
We say that a graph is *stochastically complete* if $P_t 1 = 1$ for all $t \geq 0$. This is equivalent to the uniqueness of bounded solutions for the heat equation with bounded initial conditions.
We say that a graph is *stochastically complete* if $P_t 1 = 1$ for all $t \geq 0$. This is equivalent to the uniqueness of bounded solutions for the heat equation with bounded initial conditions.

Theorem

If G is a weighted graph with $\kappa(r) \geq -C \log r$ for some $C > 0$ and all large r, then G is stochastically complete.
We say that a graph is \textit{stochastically complete} if $P_t 1 = 1$ for all $t \geq 0$. This is equivalent to the uniqueness of bounded solutions for the heat equation with bounded initial conditions.

\begin{center}
\textbf{Theorem}
\end{center}

\textit{If G is a weighted graph with }$\kappa(r) \geq -C \log r$ \textit{for some }$C > 0$ \textit{and all large }r, \textit{then }G \textit{is stochastically complete.}

Idea of proof: Use the Khas’minskii criterion for stochastic completeness along with the Laplace comparison above.
We say that a graph is *stochastically complete* if $P_t 1 = 1$ for all $t \geq 0$. This is equivalent to the uniqueness of bounded solutions for the heat equation with bounded initial conditions.

Theorem

If G is a weighted graph with $\kappa(r) \geq -C \log r$ for some $C > 0$ and all large r, then G is stochastically complete.

Idea of proof: Use the Khas’minskii criterion for stochastic completeness along with the Laplace comparison above. Note: the result is sharp as there exist stochastically incomplete line graphs with $\kappa(r) \geq -(\log r)^{1+\varepsilon}$ for any $\varepsilon > 0$.

Ollivier Ricci curvature
We can also give an improved diameter bound which then implies finiteness of the graph if the weighted degree is bounded.

Theorem

If there exists an R with,

\[
\sum_{r=1}^{R} \kappa(r) > \text{Deg}(x_0) + \max_{x \in S_R} \text{Deg}(x),
\]

then $\text{diam}(G) < 2R$ where $\text{diam}(G) = \sup_{x,y \in V} d(x, y)$.
We can also give an improved diameter bound which then implies finiteness of the graph if the weighted degree is bounded.

Theorem

If there exists an R with,

$$\sum_{r=1}^{R} \kappa(r) > \text{Deg}(x_0) + \max_{x \in S_R} \text{Deg}(x),$$

*then $\text{diam}(G) < 2R$ where $\text{diam}(G) = \sup_{x, y \in V} d(x, y)$.***

Idea of proof: use the Laplace comparison and argue by contradiction.
As an immediate corollary, we get the following statement.

Corollary

Suppose that \(\sup_{x \in V} \text{Deg}(x) < \infty \) and \(\sum_r \kappa(r) = \infty \), then the graph is finite.
As an immediate corollary, we get the following statement.

Corollary

Suppose that \(\sup_{x \in V} \text{Deg}(x) < \infty \) *and* \(\sum_r \kappa(r) = \infty \), *then the graph is finite.*

Note: the result on the diameter is sharp.
As an immediate corollary, we get the following statement.

Corollary

Suppose that \(\sup_{x \in V} \text{Deg}(x) < \infty \) and \(\sum_r \kappa(r) = \infty \), then the graph is finite.

Note: the result on the diameter is sharp. Furthermore, there exist infinite graphs with uniformly positive curvature. However, for such graph the weighted degree is unbounded.
References

Thank you for your attention!