Log-Minkowski measurability and complex dimensions

Goran Radunović

University of California, Riverside

14th June 2017

6th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals, Ithaca, NY

Joint work with
Michel L. Lapidus, University of California, Riverside,
Darko Žubrinić, University of Zagreb
Relative fractal drum \((A, \Omega)\)

- \(\emptyset \neq A \subset \mathbb{R}^N\), \(\Omega \subset \mathbb{R}^N\), Lebesgue measurable, i.e., \(|\Omega| < \infty\)
- \(\delta\)-neighbourhood of \(A\):
 \[A_\delta = \{ x \in \mathbb{R}^N : d(x, A) < \delta \} \]
- upper \(r\)-dimensional Minkowski content of \((A, \Omega)\):
 \[\overline{M}^r(A, \Omega) := \limsup_{\delta \to 0^+} \frac{|A_\delta \cap \Omega|}{\delta^{N-r}} \]
- upper Minkowski dimension of \((A, \Omega)\):
 \[\overline{\dim}_B(A, \Omega) = \inf \{ r \in \mathbb{R} : \overline{M}^r(A, \Omega) = 0 \} \]
- lower Minkowski content and dimension defined via \(\liminf\)
Minkowski measurability

\[\dim_B(A, \Omega) = \overline{\dim}_B(A, \Omega) \Rightarrow \exists \dim_B(A, \Omega) \]

if \(\exists D \in \mathbb{R} \) such that

\[0 < \mathcal{M}^D(A, \Omega) = \overline{\mathcal{M}}^D(A, \Omega) < \infty, \]

we say \((A, \Omega)\) is **Minkowski measurable**; in that case

\[D = \dim_B(A, \Omega) \]

if the above inequalities are not satisfied for \(D \), we call \((A, \Omega)\) **Minkowski degenerated**
The relative distance zeta function

- \((A, \Omega)\) RFD in \(\mathbb{R}^N\), \(s \in \mathbb{C}\) and \textbf{fix} \(\delta > 0\)

- the \textbf{distance zeta function} of \((A, \Omega)\):

\[
\zeta_{A,\Omega}(s; \delta) := \int_{A_{\delta} \cap \Omega} d(x, A)^{s-N} \, dx
\]

- dependence on \(\delta\) is not essential
The relative distance zeta function

- (A, Ω) RFD in \mathbb{R}^N, $s \in \mathbb{C}$ and fix $\delta > 0$
- the distance zeta function of (A, Ω):
 \[\zeta_{A,\Omega}(s; \delta) := \int_{A\delta \cap \Omega} d(x, A)^{s-N} \, dx \]
- dependence on δ is not essential
- the complex dimensions of (A, Ω) are defined as the poles of $\zeta_{A,\Omega}$
The relative distance zeta function

- (A, Ω) RFD in \mathbb{R}^N, $s \in \mathbb{C}$ and fix $\delta > 0$

- the **distance zeta function of** (A, Ω):

 $$\zeta_{A,\Omega}(s; \delta) := \int_{A_\delta \cap \Omega} d(x, A)^{s-N} \, dx$$

- dependence on δ is not essential

- the **complex dimensions of** (A, Ω) are defined as the poles of $\zeta_{A,\Omega}$

- take Ω to be an open neighborhood of A in order to recover the classical ζ_A
Holomorphicity theorem for the relative distance zeta function [LapRaŢu]

Theorem

- (A, Ω) RFD in \mathbb{R}^N:

1. (a) $\zeta_{A,\Omega}(s)$ is holomorphic on $\{\text{Re } s > \dim_B(A, \Omega)\}$
Holomorphicity theorem for the relative distance zeta function [LapRaŽu]

Theorem

- \((A, \Omega)\) RFD in \(\mathbb{R}^N\):

 - (a) \(\zeta_{A,\Omega}(s)\) is **holomorphic** on \(\{\text{Re } s > \dim_B(A, \Omega)\}\)

 - (b) \(\mathbb{R} \ni s < \dim_B(A, \Omega) \Rightarrow \text{the integral defining } \zeta_{A,\Omega}(s) \text{ diverges}\)
Holomorphicity theorem for the relative distance zeta function [LapRažu]

Theorem

- (A, Ω) RFD in \mathbb{R}^N:

 (a) $\zeta_{A,\Omega}(s)$ is **holomorphic** on $\{\text{Re } s > \dim_B(A, \Omega)\}$

(b) $\mathbb{R} \ni s < \dim_B(A, \Omega) \Rightarrow$ the integral defining $\zeta_{A,\Omega}(s)$ diverges

(c) if $\exists D = \dim_B(A, \Omega) < N$ and $\mathcal{M}^D(A, \Omega) > 0$, then $\zeta_{A,\Omega}(s) \to +\infty$ when $\mathbb{R} \ni s \to D^+$
Holomorphicity theorem for the relative distance zeta function [LapRaŽu]

Theorem

- \((A, \Omega)\) RFD in \(\mathbb{R}^N\):

 (a) \(\zeta_{A,\Omega}(s)\) is **holomorphic** on \(\{\Re s > \dim_B(A, \Omega)\}\)

 (b) \(\mathbb{R} \ni s < \dim_B(A, \Omega) \Rightarrow \) the integral defining \(\zeta_{A,\Omega}(s)\) diverges

 (c) if \(\exists D = \dim_B(A, \Omega) < N\) and \(\mathcal{M}^D(A, \Omega) > 0\), then \(\zeta_{A,\Omega}(s) \to +\infty\) when \(\mathbb{R} \ni s \to D^+\)

- we call \(\{\Re s = \dim_B(A, \Omega)\}\) the **critical line**
(Generalized) complex dimensions of an RFD

Definition

Let W be a connected open set s.t. $\{\Re s > \overline{\dim}_B(A, \Omega)\} \subset W$ and $\zeta_{A,\Omega}$ is holomorphic on W. The set of **visible complex dimensions of** (A, Ω) (with respect to W) is the set of singularities $\mathcal{P}(\zeta_{A,\Omega}, W) \subset \partial W$ of $\zeta_{A,\Omega}$. **
(Generalized) complex dimensions of an RFD

Definition

Let W be a connected open set s.t. $\{\text{Re } s > \dim_B(A, \Omega)\} \subset W$ and $\zeta_{A,\Omega}$ is holomorphic on W. The set of **visible complex dimensions of** (A, Ω) (with respect to W) is the set of singularities $\mathcal{P}(\zeta_{A,\Omega}, W) \subset \partial W$ of $\zeta_{A,\Omega}$.

principal complex dimensions:

$$\dim_{PC}(A, \Omega) := \{\omega \in \mathcal{P}(\zeta_{A,\Omega}, W) : \text{Re } \omega = \dim_B(A, \Omega)\}. \quad (1)$$
(Generalized) complex dimensions of an RFD

Definition

Let W be a connected open set s.t. $\{\text{Re} \, s > \dim_B(A, \Omega)\} \subset W$ and $\zeta_{A,\Omega}$ is holomorphic on W. The set of **visible complex dimensions of** (A, Ω) (with respect to W) is the set of singularities $\mathcal{P}(\zeta_{A,\Omega}, W) \subset \partial W$ of $\zeta_{A,\Omega}$.

principal complex dimensions:

$$\dim_{PC}(A, \Omega) := \{\omega \in \mathcal{P}(\zeta_{A,\Omega}, W) : \text{Re} \, \omega = \dim_B(A, \Omega)\}. \quad (1)$$

- includes poles, essential and nonisolated singularities (accumulation of poles, natural boundaries)
(Generalized) complex dimensions of an RFD

Definition

Let W be a connected open set s.t. $\{\Re s > \dim_B(A, \Omega)\} \subset W$ and $\zeta_{A,\Omega}$ is holomorphic on W. The set of **visible complex dimensions of** (A, Ω) (with respect to W) is the set of singularities $\mathcal{P}(\zeta_{A,\Omega}, W) \subset \partial W$ of $\zeta_{A,\Omega}$.

principal complex dimensions:

$$\dim_{PC}(A, \Omega) := \{\omega \in \mathcal{P}(\zeta_{A,\Omega}, W) : \Re \omega = \overline{\dim}_B(A, \Omega)\}. \quad (1)$$

- includes poles, essential and nonisolated singularities (accumulation of poles, natural boundaries)
- branching points (W is then a subset of the appropriate Riemann surface) and
(Generalized) complex dimensions of an RFD

Definition

Let W be a connected open set s.t. $\{\Re s > \dim_B(A, \Omega)\} \subset W$ and $\zeta_{A,\Omega}$ is holomorphic on W. The set of **visible complex dimensions of** (A, Ω) (with respect to W) is the set of singularities $\mathcal{P}(\zeta_{A,\Omega}, W) \subset \partial W$ of $\zeta_{A,\Omega}$.

principal complex dimensions:

$$\dim_{PC}(A, \Omega) := \{\omega \in \mathcal{P}(\zeta_{A,\Omega}, W) : \Re \omega = \overline{\dim_B(A, \Omega)}\}. \quad (1)$$

- includes poles, essential and nonisolated singularities (accumulation of poles, natural boundaries)
- branching points (W is then a subset of the appropriate Riemann surface) and also “mixed singularities”
An asymptotic formula for the tube function
\[t \mapsto |A_t \cap \Omega| \text{ as } t \to 0^+ \] in terms of \(\zeta_{A,\Omega} \).
Fractal tube formulas for relative fractal drums

- An asymptotic formula for the **tube function**

 \[t \mapsto |A_t \cap \Omega| \text{ as } t \to 0^+ \]

 in terms of \(\zeta_{A,\Omega} \).

Theorem (Simplified pointwise formula with error term)

- \(\alpha < \overline{\dim}_B(A, \Omega) < N \); \(\zeta_{A,\Omega} \) satisfies suitable rational growth conditions (**\textit{d-languidity}**) on the half-plane \(W := \{ \text{Re} s > \alpha \} \), then:

\[
|A_t \cap \Omega| = \sum_{\omega \in \mathcal{P}(\zeta_{A,\Omega}, W)} \text{res} \left(\frac{t^{N-s}}{N-s} \zeta_{A,\Omega}(s), \omega \right) + O(t^{N-\alpha}).
\]
Fractal tube formulas for relative fractal drums

- An asymptotic formula for the **tube function**
 \[t \mapsto |A_t \cap \Omega| \text{ as } t \to 0^+ \] in terms of \(\zeta_{A, \Omega} \).

Theorem (Simplified pointwise formula with error term)

- \(\alpha < \dim_B(A, \Omega) < N \); \(\zeta_{A, \Omega} \) satisfies suitable rational growth conditions (*d-languidity*) on the half-plane \(W := \{ \text{Re } s > \alpha \} \), then:

\[
|A_t \cap \Omega| = \sum_{\omega \in \mathcal{P}(\zeta_{A, \Omega}, W)} \text{res} \left(\frac{t^{N-s}}{N-s} \zeta_{A, \Omega}(s), \omega \right) + O(t^{N-\alpha}).
\]

- If we allow polynomial growth of \(\zeta_{A, \Omega} \), in general, we get a tube formula in the sense of Schwartz distributions.
The Minkowski measurability criterion

Theorem (Minkowski measurability criterion)

- (A, Ω) is such that $\exists D := \dim_B(A, \Omega)$ and $D < N$
- $\zeta_{A,\Omega}$ is \textit{d-languid} on a suitable domain $W \supset \{\text{Res } s = D\}$

Then, the following is equivalent:

(a) (A, Ω) is Minkowski measurable.

(b) D is the only pole of $\zeta_{A,\Omega}$ located on the critical line $\{\text{Res } s = D\}$ and it is simple.

$$\mathcal{M}^D(A, \Omega) = \frac{\text{res}(\zeta_{A,\Omega}, D)}{N - D}$$
The Minkowski measurability criterion

- \((a) \Rightarrow (b)\): from the distributional tube formula and the **Uniqueness theorem for almost periodic distributions** due to **Schwartz**

- \((b) \Rightarrow (a)\): a consequence of a **Tauberian theorem** due to **Wiener** and **Pitt** (conditions can be considerably weakened)

- the assumption \(D < N\) can be removed by appropriately embedding the RFD in \(\mathbb{R}^{N+1}\)
an example of a **self-similar fractal spray** with a generator G being an open equilateral triangle and with **scaling ratios** $r_1 = r_2 = r_3 = 1/2$

$$(A, \Omega) = (\partial G, G) \sqcup \bigsqcup_{j=1}^{3} (r_j A, r_j \Omega)$$
Fractal tube formula for The Sierpiński gasket

\[
\zeta_A(s; \delta) = \frac{6(\sqrt{3})^{1-s}2^{-s}}{s(s-1)(2^s - 3)} + 2\pi \frac{\delta^s}{s} + 3 \frac{\delta^{s-1}}{s-1}
\]
Fractal tube formula for The Sierpiński gasket

\[\zeta_A(s; \delta) = \frac{6(\sqrt{3})^{1-s}2^{-s}}{s(s-1)(2^s - 3)} + 2\pi \frac{\delta^s}{s} + 3 \frac{\delta^{s-1}}{s-1} \]

\[\mathcal{P}(\zeta_A) = \{0, 1\} \cup \left(\log_2 3 + \frac{2\pi}{\log 2} \mathbb{Z} \right) \]
Fractal tube formula for The Sierpiński gasket

$$
\zeta_A(s; \delta) = \frac{6(\sqrt{3})^{1-s}2^{-s}}{s(s-1)(2^s-3)} + 2\pi \frac{\delta^s}{s} + 3\frac{\delta^{s-1}}{s-1}
$$

$$
\mathcal{P}(\zeta_A) = \{0, 1\} \cup \left(\log_2 3 + \frac{2\pi}{\log 2} i\mathbb{Z} \right)
$$

By letting \(\omega_k := \log_2 3 + pk i \) and \(p := 2\pi / \log 2 \) we have that
Fractal tube formula for The Sierpiński gasket

$$
\zeta_A(s; \delta) = \frac{6(\sqrt{3})^{1-s}2^{-s}}{s(s - 1)(2^s - 3)} + 2\pi \frac{\delta^s}{s} + 3 \frac{\delta^{s-1}}{s - 1}
$$

$$
\mathcal{P}(\zeta_A) = \{0, 1\} \cup \left(\log_2 3 + \frac{2\pi}{\log 2} \mathbb{i}\mathbb{Z} \right)
$$

By letting $\omega_k := \log_2 3 + pk\mathbb{i}$ and $p := 2\pi / \log 2$ we have that

$$
|A_t| = \sum_{\omega \in \mathcal{P}(\zeta_A)} \text{res} \left(\frac{t^{2-s}}{2 - s} \zeta_A(s; \delta), \omega \right)
$$
Fractal tube formula for The Sierpiński gasket

\[\zeta_A(s; \delta) = \frac{6(\sqrt{3})^{1-s}2^{-s}}{s(s-1)(2^s-3)} + 2\pi \frac{\delta^s}{s} + 3 \frac{\delta^{s-1}}{s-1} \]

\[\mathcal{P}(\zeta_A) = \{0, 1\} \cup \left(\log_2 3 + \frac{2\pi}{\log 2} i\mathbb{Z} \right) \]

By letting \(\omega_k := \log_2 3 + p k i \) and \(p := 2\pi / \log 2 \) we have that

\[|A_t| = \sum_{\omega \in \mathcal{P}(\zeta_A)} \text{res} \left(\frac{t^{2-s}}{2-s} \zeta_A(s; \delta), \omega \right) \]

\[= t^{2-\log_2 3} \frac{6\sqrt{3}}{\log 2} \sum_{k=-\infty}^{+\infty} \frac{(4\sqrt{3})^{-\omega_k}t^{-pk_i}}{(2 - \omega_k)(\omega_k - 1)\omega_k} + \left(\frac{3\sqrt{3}}{2} + \pi \right) t^2, \]

valid pointwise for all \(t \in (0, 1/2\sqrt{3}) \).
If \((A, \Omega)\) is Minkowski degenerate, \(\exists D := \dim_B(A, \Omega)\) and

\[
|A_t \cap \Omega| = t^{N-D}(F(t) + o(1)) \quad \text{as } t \to 0^+,
\]

where \(F(t) = h(t)\) or \(F(t) = 1/h(t)\) for \(h : (0, \varepsilon_0) \to (0, +\infty)\),

\(h(t) \to +\infty\) as \(t \to 0^+\) and \(h \in O(t^\beta)\) for \(\forall \beta < 0\).
Gauge Minkowski content [HeLap]

If \((A, \Omega)\) is Minkowski degenerate, \(\exists D := \dim_B(A, \Omega)\) and

\[
|A_t \cap \Omega| = t^{N-D}(F(t) + o(1)) \quad \text{as } t \to 0^+,
\]

where \(F(t) = h(t)\) or \(F(t) = 1/h(t)\) for \(h : (0, \varepsilon_0) \to (0, +\infty)\), \(h(t) \to +\infty\) as \(t \to 0^+\) and \(h \in O(t^\beta)\) for \(\forall \beta < 0\).

- \(h\) is called a **gauge function of slow growth to \(+\infty\)** at \(0^+\)
- \(1/h\) is called a **gauge function of slow decay \(0\)** at \(0^+\)
- typical gauge functions: \((\log^{\circ k} t^{-1})^a\) for \(a \in \mathbb{R}^*, k \in \mathbb{N}\)
If \((A, \Omega)\) is Minkowski degenerate, \(\exists D := \dim_B(A, \Omega)\) and
\[
|A_t \cap \Omega| = t^{N-D}(F(t) + o(1)) \quad \text{as } t \to 0^+,
\]
where \(F(t) = h(t)\) or \(F(t) = 1/h(t)\) for \(h : (0, \varepsilon_0) \to (0, +\infty)\), \(h(t) \to +\infty\) as \(t \to 0^+\) and \(h \in O(t^\beta)\) for \(\forall \beta < 0\).

- \(h\) is called a **gauge function of slow growth to** \(+\infty\) **at** \(0^+\)
- \(1/h\) is called a **gauge function of slow decay** \(0\) **at** \(0^+\)
- typical gauge functions: \((\log^k t^{-1})^a\) for \(a \in \mathbb{R}^*, k \in \mathbb{N}\)
- **\(h\)-Minkowski content:**
\[
\mathcal{M}^D(A, \Omega, h) = \lim_{t \to 0^+} \frac{|A_t \cap \Omega|}{t^{N-D}h(t)}.
\]
The fractal nest generated by the a-string

$a > 0$, $a_j := j^{-a}$, $\ell_j := j^{-a} - (j + 1)^{-a}$, $\Omega := B_{a_1}(0)$

$$\zeta_{A_a,\Omega}(s) = \frac{2^{2-s}\pi}{s - 1} \sum_{j=1}^{\infty} \ell_j^{s-1}(a_j + a_{j+1})$$
Example

\[\mathcal{P}(\zeta A_a, \Omega) \subseteq \left\{ 1, \frac{2}{a + 1}, \frac{1}{a + 1} \right\} \cup \left\{ -\frac{m}{a + 1} : m \in \mathbb{N} \right\} \]

\[a \neq 1, \quad D := \frac{2}{1+a} \quad \Rightarrow \quad |(A_a)_t \cap \Omega| = \frac{2^{2-D}D\pi}{(2-D)(D-1)}a^{D-1}t^{2-D} + 2\pi(2\zeta(a) - 1)t \]

\[+ O(t^{2-\frac{1}{a+1}}), \quad \text{as } t \to 0^+ \]
Fractal tube formula for the fractal nest generated by the a-string

Example

$$\mathcal{P}(\zeta_{A_a}, \Omega) \subseteq \left\{1, \frac{2}{a+1}, \frac{1}{a+1}\right\} \cup \left\{-\frac{m}{a+1} : m \in \mathbb{N}\right\}$$

$a \neq 1$, $D := \frac{2}{1+a} \Rightarrow$

$$|(A_a)_t \cap \Omega| = \frac{2^{2-D}D\pi}{(2-D)(D-1)}a^{D-1}t^{2-D} + 2\pi(2\zeta(a) - 1)t$$

$$+ O(t^{2-\frac{1}{a+1}}), \text{ as } t \to 0^+$$

$$|(A_1)_t \cap \Omega| = \operatorname{res} \left(\frac{t^{2-s}}{2-s}\zeta_{A_1, \Omega}(s), 1\right) + o(t)$$

$$= 2\pi t(-\log t) + \text{const} \cdot t + o(t) \text{ as } t \to 0^+$$
Fractal tube formula for the fractal nest generated by the a-string

Example

$$\mathcal{P}(\zeta_{A_a,\Omega}) \subseteq \left\{1, \frac{2}{a+1}, \frac{1}{a+1}\right\} \cup \left\{-\frac{m}{a+1} : m \in \mathbb{N}\right\}$$

$$a \neq 1, \quad D := \frac{2}{1+a} \Rightarrow \quad \left|(A_a)_t \cap \Omega \right| = \frac{2^{2-D}D\pi}{(2-D)(D-1)}a^{D-1}t^{2-D} + 2\pi(2\zeta(a) - 1)t$$

$$+ O\left(t^{2-\frac{1}{a+1}}\right), \text{ as } t \to 0^+$$

$$\left|(A_1)_t \cap \Omega \right| = \text{res} \left(\frac{t^{2-s}}{2-s}\zeta_{A_1,\Omega}(s), 1\right) + o(t)$$

$$= 2\pi t(-\log t) + \text{const} \cdot t + o(t) \quad \text{as } t \to 0^+$$

- a pole ω of order m generates terms of type $t^{N-\omega}(-\log t)^{k-1}$ for $k = 1, \ldots, m$ in the fractal tube formula
Sufficiency for log-Minkowski measurability via the Wiener-Pitt Tauberian theorem

- $m \in \mathbb{Z}$; $\zeta_{A,\Omega}^{[m]}$ denotes its the $|m|$-th derivative if $m < 0$ and the m-th primitive if $m > 0$;
Sufficiency for log-Minkowski measurability via the Wiener-Pitt Tauberian theorem

- $m \in \mathbb{Z}$; $\zeta_A^{[m]}$ denotes its the $|m|$-th derivative if $m < 0$ and the m-th primitive if $m > 0$; $\zeta_A^{[0]} := \zeta_A, \Omega$

Theorem

- $\overline{D} := \dim_B(A, \Omega) < N$; $\exists m \in \mathbb{Z}, \exists K > 0$, s.t. $\forall \lambda > 0$

$$G_x(y) := \zeta_A^{[m]}(x + iy) - \frac{(-1)^mK}{x + iy - \overline{D}}$$

converges in $L^1(-\lambda, \lambda)$ to a boundary function $G(y)$ as $x \to \overline{D}^+$.

Sufficiency for log-Minkowski measurability via the Wiener-Pitt Tauberian theorem

- $m \in \mathbb{Z}$; $\zeta_{A,\Omega}^{[m]}$ denotes its the $|m|$-th derivative if $m < 0$ and the m-th primitive if $m > 0$; $\zeta_{A,\Omega}^{[0]} := \zeta_{A,\Omega}$

Theorem

- $\overline{D} := \dim_B(A, \Omega) < N$; $\exists m \in \mathbb{Z}, \exists K > 0$, s.t. $\forall \lambda > 0$

$$G_x(y) := \zeta_{A,\Omega}^{[m]}(x + iy) - \frac{(-1)^m K}{x + iy - \overline{D}}$$

converges in $L^1(-\lambda, \lambda)$ to a boundary function $G(y)$ as $x \to \overline{D}^+$. Then, $\exists D := \dim_B(A, \Omega) = \overline{D}$ and (A, Ω) is h-Minkowski measurable s.t.

$$\mathcal{M}^{D}(A, \Omega, h) = \frac{K}{N - D}, \quad (3)$$

where $h(t) := (-\log t)^m$.
Corollary: Case of poles

Theorem

- \(\overline{D} := \dim_B(A, \Omega) < N \); \(\dim_{PC}(A, \Omega) \) consists only of poles and has no accumulation points;
Corollary: Case of poles

Theorem

- $\bar{D} := \dim_B(A, \Omega) < N$; $\dim_{PC}(A, \Omega)$ consists only of poles and has no accumulation points;
- \bar{D} is a pole of order m and all other poles on $\{\text{Re } s = \bar{D}\}$ are of order **strictly less** than m.

\[A; \Omega \rceil_{\bar{D}} \] denotes the leading coefficient of the Laurent expansion of $A; \Omega$ at \bar{D}.
Corollary: Case of poles

Theorem

- \(\overline{D} := \dim_B(A, \Omega) < N; \dim_{PC}(A, \Omega) \) consists only of poles and has no accumulation points;
- \(\overline{D} \) is a pole of order \(m \) and all other poles on \(\{ \Re s = \overline{D} \} \) are of order strictly less than \(m \).

Then, \(\exists D := \dim_B(A, \Omega) = \overline{D} \) and \((A, \Omega) \) is \(h \)-Minkowski measurable:

\[
\mathcal{M}^D(A, \Omega, h) = \frac{\zeta_{A, \Omega}[D]_{-m}}{(N - D)(m - 1)!},
\]

where \(h(t) := (-\log t)^{m-1} \).

- \(\zeta_{A, \Omega}[D]_{-m} \) denotes the leading coefficient of the Laurent expansion of \(\zeta_{A, \Omega} \) at \(D \).
Zero-log singularities

Definition

- \(\psi, \phi \) holo. germs at \(\omega \in \mathbb{C} \) s.t. \(\omega \) is a zero of order \(m \) of \(\psi \).

We say that the holo. germ

\[
f(s) := \psi(s) \log(s - \omega) + \phi(s)
\]

on the principal branch of \(\log(s - \omega) \) has a zero-log singularity of order \(m \) at \(\omega \).
Zero-log singularities

Definition

1. ψ, ϕ holo. germs at $\omega \in \mathbb{C}$ s.t. ω is a zero of order m of ψ. We say that the holo. germ
 \[f(s) := \psi(s) \log(s - \omega) + \phi(s) \]
on the principal branch of $\log(s - \omega)$ has a zero-log singularity of order m at ω.

2. For instance, $f(s) = (s - 2)^3 \log(s - 2)$ has a zero-log singularity of order 3 at $\omega = 2$.
3. $\log s$ has a zero-log singularity of order 0 at $\omega = 0$, etc.
Corollary: Case of zero-log singularities

Theorem (Case of zero-log singularities)

- $\overline{D} := \overline{\dim_B}(A, \Omega) < N$; $\dim_{PC}(A, \Omega)$ consists only of zero-log singularities and has no accumulation points;
- \overline{D} is a zero-log sing. of order m
Corollary: Case of zero-log singularities

Theorem (Case of zero-log singularities)

- \(\overline{D} := \dim_B(A, \Omega) < N \); \(\dim_{PC}(A, \Omega) \) consists only of zero-log singularities and has no accumulation points;
- \(\overline{D} \) is a zero-log sing. of order \(m \) and all the other zero-log sings. of \(\zeta_{A,\Omega} \) on \(\{\text{Re } s = \overline{D}\} \) are of strictly higher order than \(m \).
Corollary: Case of zero-log singularities

Theorem (Case of zero-log singularities)

- $\bar{D} := \dim_B(A, \Omega) < N; \dim_{PC}(A, \Omega)$ consists only of zero-log singularities and has no accumulation points;
- \bar{D} is a zero-log sing. of order m and all the other zero-log sings. of $\zeta_{A,\Omega}$ on $\{\text{Re } s = \bar{D}\}$ are of strictly higher order than m.

Then, $\exists D := \dim_B(A, \Omega) = \bar{D}$ and (A, Ω) is h-Minkowski measurable with Minkowski content given by

$$M^D(A, \Omega, h) = (-1)^{m+1} m! \lim_{{s \to \bar{D}}} \frac{\psi(s)}{(s - \bar{D})^m},$$

(5)

where $h(t) := \frac{1}{(-\log t)^{m+1}}$.
Examples of sets that have zero-log complex dimensions?

- Not easy to find nice examples where we can calculate everything explicitly
Examples of sets that have zero-log complex dimensions?

- Not easy to find nice examples where we can calculate everything explicitly
- They will arise naturally as orbits of some discrete dynamical systems
Examples of sets that have zero-log complex dimensions?

- Not easy to find nice examples where we can calculate everything explicitly
- They will arise naturally as orbits of some discrete dynamical systems

Theorem (Mardešić, Resman, Županović)

Let \(f \in \text{Diff}^r(0, a) \) be continuous on \([0, a]\), positive on \((0, a)\) and let \(f(0) = f'(0) = 0 \). Assume \(1 < x(\log(f))'(x) \). Put \(g = \text{id} - f \) and let \(S^g(x_0) = \{x_n| n \in \mathbb{N}\} \) be an orbit of \(g \), \(x_0 < a \).

\[
|A_t(S^g(x_0))| \asymp g^{-1}(t)
\]
Examples of sets that have zero-log complex dimensions?

- Not easy to find nice examples where we can calculate everything explicitly
- They will arise naturally as orbits of some discrete dynamical systems

Theorem (Mardešić, Resman, Županović)

Let $f \in \text{Diff}^r(0, a)$ be continuous on $[0, a)$, positive on $(0, a)$ and let $f(0) = f'(0) = 0$. Assume $1 < \alpha(\log(f))'(x)$. Put $g = \text{id} - f$ and let $S^g(x_0) = \{x_n| n \in \mathbb{N}\}$ be an orbit of g, $x_0 < a$.

$$|A_t(S^g(x_0))| \asymp g^{-1}(t)$$

- Let $g(x) = x^k \log^\alpha(x^{-1})$, then $g^{-1}(t) \asymp \frac{t^{1/k}}{\log^\alpha(t^{-1})^{1/k}}$
Examples of sets that have zero-log complex dimensions?

- Not easy to find nice examples where we can calculate everything explicitly
- They will arise naturally as orbits of some discrete dynamical systems

Theorem (Mardešić, Resman, Županović)

Let $f \in \text{Diff}^r(0, a)$ be continuous on $[0, a)$, positive on $(0, a)$ and let $f(0) = f'(0) = 0$. Assume $1 < x(\log(f))'(x)$. Put $g = id - f$ and let $S^g(x_0) = \{x_n| n \in \mathbb{N}\}$ be an orbit of g, $x_0 < a$.

$$|A_t(S^g(x_0))| \asymp g^{-1}(t)$$

- Let $g(x) = x^k \log^\circ m(x^{-1})$, then $g^{-1}(t) \asymp \frac{t^{1/k}}{\log^\circ m(t^{-1})^{1/k}}$
- we also have $|A_t(S^g(x_0))| \asymp t(- \log t)$ for appropriate differentiable f
The 1/2-square fractal

Figure: Here, $G := G_1 \cup G_2$ is the single generator of the corresponding self-similar spray or RFD (A, Ω), where $\Omega = (0, 1)^2$.
Fractal tube formula for the $1/2$-square fractal

$$\zeta_A(s) = \frac{2^{-s}}{s(s - 1)(2^s - 2)} + \frac{4}{s - 1} + \frac{2\pi}{s}, \quad (6)$$

$$D(\zeta_A) = 1, \quad \mathcal{P}(\zeta_A) := \mathcal{P}(\zeta_A, \mathbb{C}) = \{0\} \cup \left(1 + \frac{2\pi}{\log 2} \mathbb{i}\mathbb{Z}\right). \quad (7)$$
Fractal tube formula for the $\frac{1}{2}$-square fractal

$$\zeta_A(s) = \frac{2^{-s}}{s(s - 1)(2^s - 2)} + \frac{4}{s - 1} + \frac{2\pi}{s},$$

(6)

$$D(\zeta_A) = 1, \quad \mathcal{P}(\zeta_A) := \mathcal{P}(\zeta_A, \mathbb{C}) = \{0\} \cup \left(1 + \frac{2\pi}{\log 2}i\mathbb{Z}\right).$$

(7)

$$|A_t| = \sum_{\omega \in \mathcal{P}(\zeta_A)} \operatorname{res}\left(\frac{t^{2-s}}{2-s} \zeta_A(s), \omega\right)$$

$$= \frac{1}{4 \log 2} t \log t^{-1} + t \ G(\log_2(4t)^{-1}) + \frac{1 + 2\pi}{2} t^2,$$

(8)

valid for all $t \in (0, \frac{1}{2})$, where G is a nonconstant 1-periodic function on \mathbb{R} bounded away from zero and ∞.

The $\frac{1}{2}$-square fractal is critically fractal in dimension 1.
Further research directions

- Riemann surfaces generated by relative fractal drums
- Extending the notion of complex dimensions to include complicated “mixed” singularities/branching points and connecting them with various gauge functions
- Obtaining corresponding tube formulas and gauge-Minkowski measurability criteria
- Applying the theory to problems from dynamical systems

