A TUBE FORMULA FOR THE KOCH SNOWFLAKE CURVE, WITH APPLICATIONS TO COMPLEX DIMENSIONS.

MICHEL L. LAPI DUS AND ERIN P. J. PEARSE

Current (i.e., unfinished) draught of the full version is available at http://math.ucr.edu/~epear se/koch.pdf.
Figure 1. The Koch curve K (left) and the Koch snowflake Ω (right).
Goal: derive a formula for the ε-neighbourhood of the Koch curve (and snowflake).

We want to find a formula for

$$V(\varepsilon) = \text{area of shaded region} = \text{vol}_2\{x \in \Omega : d(x, \partial \Omega) < \varepsilon\}$$
Q: What use is $V(\varepsilon)$?
A: A precise formula for $V(\varepsilon)$ will help towards extending the theory of fractal strings into higher dimensions.

A fractal string is any bounded open subset of \mathbb{R}

$$\mathcal{L} := \{l_j\}_{j=1}^{\infty}, \quad \text{with } \sum_{j=1}^{\infty} l_j < \infty.$$

$$l_1 \geq l_2 \geq l_3 \geq \ldots,$$

or distinctly (with multiplicity):

$$l_1 > l_2 > l_3 > \ldots.$$

Idea/origin: comes from studying fractal subsets $\partial \mathcal{L} \subseteq \mathbb{R}$.

Figure 3. The Cantor Set

Figure 4. The Cantor String

The Cantor String example has lengths
\[\left\{ 3^{-(n+1)} \right\} \]
with multiplicities
\[w_{3^{-(n+1)}} = 2^n. \]

\[\begin{array}{cccccccc}
 & & & & l_1 & & & \\
 & & & l_2 & & & & \\
 & & l_3 & & & & & \\
 & l_4 & & l_5 & & l_6 & & l_7 \\
& & & & & & &
\end{array} \]

\[\mathcal{CS} = \left\{ \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{27}, \frac{1}{27}, \frac{1}{27}, \ldots \right\} \]

The geometric zeta function of a string
\[\zeta_{\mathcal{L}}(s) = \sum_{j=1}^{\infty} l_j^s = \sum_{l} w_l l^s \]
encodes all this information.

Example:
\[\zeta_{\mathcal{CS}}(s) = \sum_{n=0}^{\infty} 2^n 3^{-(n+1)s} = \frac{3^{-s}}{1 - 2 \cdot 3^{-s}}. \]
Three key things about ζ_L:
(1) Relates to the dimension of ∂L.
(2) Connects spectral and geometric properties.
(3) Gives an explicit formula for $V(\varepsilon)$.

For (1), recover the Minkowski dimension

$$D_{\partial L} := \inf\{t \geq 0 : V(\varepsilon) = O(\varepsilon^{1-t}) \text{ as } \varepsilon \to 0^+\} = \inf\{\sigma \geq 0 : \zeta_L(s) < \infty\}$$

Generalize and define the complex dimensions:

$$\mathcal{D} = \{\omega \in \mathbb{C} : \zeta_L \text{ has a pole at } \omega\}$$

Theorem 1 (Structure of Complex Dimensions).

If ∂L is self-similar, then either

(1) \mathcal{D} is “periodic” and ∂L is not measurable, or

(2) \mathcal{D} is “quasiperiodic” and ∂L is measurable.

Here, ∂L is *(Minkowski) measurable* iff

$$\mathcal{M} = \mathcal{M}(D; \partial L) = \lim_{\varepsilon \to 0^+} V(\varepsilon)\varepsilon^{-(1-D)}$$

exists in $(0, \infty)$.
For (2), a frequency of \mathcal{L} is
\[f = \sqrt{\lambda}/\pi = \frac{k}{l_j}. \]

The spectral zeta function of \mathcal{L} is
\[\zeta_{\nu}(s) = \sum_{j,k=1}^{\infty} (k \cdot l_j^{-1})^{-s} = \sum f w f^{-s} \]

Then
\[\zeta_{\nu}(s) = \zeta_{\mathcal{L}}(s) \zeta (s) \]
relates spectral and geometric information.

For (3), we have the explicit (distributional) formula
\[
V(\varepsilon) = \sum_{\omega \in \mathcal{D}_\mathcal{L}} \text{res} \left(\frac{\zeta_{\mathcal{L}}(s)(2\varepsilon)^{1-s}}{s(1-s)}; \omega \right) + \mathcal{R}(\varepsilon) \\
= \sum_{\omega \in \mathcal{D}_\mathcal{L}} \left(\frac{\text{res} \left(\zeta_{\mathcal{L}}; \omega \right) 2^{1-\omega}}{\omega(1-\omega)} \right) \varepsilon^{1-\omega} + \mathcal{R}(\varepsilon).
\]

We want higher-dimensional analogues of these results.

Computing $V(\varepsilon)$ for the Koch curve provides
- a test of how well the theory holds up for $\Omega \subseteq \mathbb{R}^2$
- intuition about how to extend into \mathbb{R}^2
First, partition the ε-neighbourhood.

\begin{align*}
\varepsilon \in \left(3^{-(n+3/2)}, 3^{-(n+1/2)}\right) &= \left(3^{-(n+1)/\sqrt{3}}, 3^{-n/\sqrt{3}}\right).
\end{align*}

Figure 5. An approximation to the inner ε-neighbourhood of the Koch curve.

Figure 6. Another ε-neighbourhood of the Koch curve, for smaller ε.
Count each type of piece:

<table>
<thead>
<tr>
<th>shape</th>
<th>number</th>
<th>volume (area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rectangles</td>
<td>$r_n = 4^n$</td>
<td>$\varepsilon 3^{-n}$</td>
</tr>
<tr>
<td>wedges</td>
<td>$w_n = \frac{2}{3}(4^n - 1)$</td>
<td>$\pi \varepsilon^2/6$</td>
</tr>
<tr>
<td>triangles</td>
<td>$u_n = \frac{2}{3}(4^n - 1) + 2$</td>
<td>$\varepsilon^2 \sqrt{3}/2$</td>
</tr>
<tr>
<td>fringe</td>
<td>4^n</td>
<td>$9^{1-n} \sqrt{3}/160$</td>
</tr>
</tbody>
</table>

A preliminary formula is

$$\hat{V}(\varepsilon) = \hat{V}_1(\varepsilon) + \hat{V}_2(\varepsilon) - \hat{V}_3(\varepsilon) + \hat{V}_4(\varepsilon),$$

where

$$\hat{V}_1(\varepsilon) := 4^n \cdot \varepsilon 3^{-n}$$

$$\hat{V}_2(\varepsilon) := \frac{2}{3}(4^n - 1) \cdot \frac{\pi \varepsilon^2}{6}$$

$$\hat{V}_3(\varepsilon) := \left(\frac{2}{3}(4^n - 1) + 2\right) \cdot \frac{\varepsilon^2 \sqrt{3}}{2}$$

$$\hat{V}_4(\varepsilon) := \left(\frac{4}{9}\right)^n \left(\frac{3^2 \sqrt{3}}{5 \cdot 2^5}\right)$$
Problem: formula contains a discrete variable. Need to convert to continuous:

\[n = n(\varepsilon) = [x] = x - \{x\} \quad \text{for} \quad x = -\log_3(\varepsilon \sqrt{3}). \]

Figure 7. The exponent \(n = n(\varepsilon) \), as a function for \(\varepsilon \to 0 \).

Now as fn of \(\varepsilon, x = -\log_3(\varepsilon \sqrt{3}) \):

\[
\hat{V}(\varepsilon) = \varepsilon^{2-D} 4^{-\{x\}} \left(\frac{27 \sqrt{3}}{640} \{x\} + \frac{\sqrt{3}}{2} \{x\} + \left(\frac{\pi}{18} - \frac{\sqrt{3}}{6} \right) \right) - \varepsilon^2 \left(\frac{\pi}{9} + \frac{2\sqrt{3}}{9} \right)
\]
Convert to Fourier series using

\[a^{-\{u\}} = \frac{a - 1}{a} \sum_{\beta \in \mathbb{Z}} \frac{e^{2\pi i \beta u}}{\log a + 2\pi i \beta} \]

and get

\[\hat{V}(\varepsilon) = \varepsilon^{2-D} \sum_{n \in \mathbb{Z}} \left(-\frac{27\sqrt{3}}{2^9} \frac{e^{2\pi inx}}{\log 4/9+2\pi in} + \frac{\sqrt{3}}{8} \frac{e^{2\pi inx}}{\log 4/3+2\pi in} \right) + \left(\frac{3\pi}{72} - \frac{\sqrt{3}}{8} \right) \frac{e^{2\pi inx}}{\log 4+2\pi in} \right) - \varepsilon^2 \left(\frac{\pi}{9} + \frac{2\sqrt{3}}{3} \right). \]

Now: collect the error.

\textbf{Figure 8.} Where the error lies - the bold region is not within \(\varepsilon \) of \(K \).
We decompose an error block:

![Diagram showing decomposition of an error block into a central triangle and two wedge segments.](image)

Figure 9. \(w(\varepsilon) \) gives the width of the block

Use elementary methods to find the area \(A_1(\varepsilon) \):

![Diagram showing the height of the central triangle.](image)

Figure 10. Finding the height of the central triangle

\[
A_1(\varepsilon) = \varepsilon \frac{w}{3} - \varepsilon^2 \sin^{-1} \left(\frac{w}{6\varepsilon} \right) - \varepsilon \frac{w}{6} \sqrt{1 - \left(\frac{w}{6\varepsilon} \right)^2}.
\]
The area of the error in this block is

\[
B(\varepsilon) := \sum_{k=1}^{\infty} 2^{k-1} \left(\frac{\varepsilon w(\varepsilon)}{3^k} - \varepsilon^2 \sin^{-1} \left(\frac{w(\varepsilon)}{2 \cdot 3^k \varepsilon} \right) \right) - \varepsilon \frac{w(\varepsilon)}{2 \cdot 3^k} \sqrt{1 - \left(\frac{w(\varepsilon)}{2 \cdot 3^k \varepsilon} \right)^2}. \]

Figure 11. Naming the trianglets

Apply series expansions for \(\sin^{-1} u\) and \(\sqrt{1 - u^2}\),

\[
w(\varepsilon) = 3^{-[x]} = 3^{\{x\}} \varepsilon \sqrt{3},
\]

and Fubini Thm, to get
\[B(\varepsilon) = \frac{\varepsilon w(\varepsilon)}{2} \]

\[+ \sum_{m=0}^{\infty} \frac{(2m)!}{2^{4m+1} (m!)^2} \left(\frac{w(\varepsilon)^2}{2^3 \varepsilon (m+1)} \cdot \frac{1}{3^{2m+3} - 2} \right) \left(\frac{w(\varepsilon)}{\varepsilon} \right)^{2m+1} \]

How many such error blocks are there?

Some blocks are whole; others form as \(\varepsilon \to 0 \).

\textbf{Figure 12.} Error block formation
We count the error blocks

\[\delta(\varepsilon) = c_n + p_n h \]

\[= c(\varepsilon) + p(\varepsilon) h(\varepsilon) \]

\[= \frac{\varepsilon^{-D}}{6} 4^{-\{x\}} + \frac{\varepsilon^{-D}}{6} 4^{-\{x\}} h(\varepsilon) + \frac{2}{3} h(\varepsilon) - \frac{4}{3} \]

where \(h(\varepsilon) \) is some function indicating what portion of the partial block has formed.

\[0 \leq h(\varepsilon) = h \left(\frac{\varepsilon}{3} \right) \leq \mu < 1 \]

We don’t know \(h(\varepsilon) \) explicitly, but we do know

\[h(\varepsilon) = \sum_{\alpha \in \mathbb{Z}} g_\alpha e^{2\pi i \alpha x} \]

Total error is

\[E(\varepsilon) = \delta(\varepsilon) B(\varepsilon) \]

Compute the desired volume formula as

\[V(\varepsilon) = \hat{V}(\varepsilon) - E(\varepsilon) \]

by converting everything into series expansion.
After 11 pages of calculations . . .

\[V(\varepsilon) = G_1(\varepsilon)\varepsilon^{2-D} + G_2(\varepsilon)\varepsilon^2, \]

where

\[
G_1(\varepsilon) := \frac{1}{\log 3} \sum_{n \in \mathbb{Z}} \left(a_n + \sum_{\nu \in \mathbb{Z}} b_{\nu} g_{n-\nu} \right) (-1)^n \varepsilon^{-in\mathbf{p}}
\]

\[
G_2(\varepsilon) := \frac{1}{\log 3} \sum_{n \in \mathbb{Z}} \left(\sigma_n + \sum_{\nu \in \mathbb{Z}} \tau_{\nu} g_{n-\nu} \right) (-1)^n \varepsilon^{-in\mathbf{p}},
\]

are periodic functions of multiplicative period 3, and

\[
a_n = -\frac{3^{9/2}}{2^9(D-2+in\mathbf{p})} + \frac{3^{3/2}}{2^3(D-1+in\mathbf{p})} + \frac{\pi-3^{3/2}}{2^3(D+in\mathbf{p})} - \frac{1}{2} b_n,
\]

\[
b_n = \sum_{m=1}^{\infty} \frac{3^{m-1/2}(2m-2)!}{2^{4m+1}(2m+1)m!(m-1)!} \cdot \frac{(4-3^{2m+1})}{(3^{2m+1}-2)(D-2m-1+iv\mathbf{p})},
\]

\[
\sigma_n = \left(\frac{\pi}{9} + \frac{2\sqrt{3}}{3} \right) \delta_0^n - \tau_n,
\]

\[
\tau_n = \sum_{m=1}^{\infty} \frac{(2m)!3^{m+1/2}}{2^{4m-2}(2m+1)m!(m-1)!} \cdot \frac{1-3^{2m+1}}{(3^{2m+1}-2)(-2m-1+iv\mathbf{p})}.
\]

The \(g_\alpha \) are Fourier coefficients of function which counts the error blocks (actually, it describes how much has formed).
However, the coefficients are not the interesting part. The formula for $V(\varepsilon)$ contains all the complex dimensions! We rewrite as

$$V(\varepsilon) = \sum_{n \in \mathbb{Z}} G_3(\varepsilon)\varepsilon^{2-D-inp} + \sum_{n \in \mathbb{Z}} G_4(\varepsilon)\varepsilon^{2-inp}.$$

This gives the possible dimensions

$$\mathcal{D}_{\partial\Omega} = \{D + inp : n \in \mathbb{Z}\} \cup \{inp : n \in \mathbb{Z}\}.$$
Notes on $h(\varepsilon)$:

The least upper bound of $h(\varepsilon)$ is $\mu = C(\varepsilon)/B(\varepsilon)$:

![Graph of C(\varepsilon) and B(\varepsilon)](image)

Figure 13. μ is the ratio $C(\varepsilon)/B(\varepsilon)$.

Three essential properties:

(i) $h(\varepsilon)$ oscillates multiplicatively,

(ii) $h(\varepsilon_k) = \lim_{\vartheta \to 0^-} h(\varepsilon_k + \vartheta) = 0$,

(iii) $\lim_{\vartheta \to 0^+} h(\varepsilon_k + \vartheta) = \mu$,

where $\varepsilon_k = \frac{3^{-k}}{\sqrt{3}}$. Compare to

$$\tilde{h}(\varepsilon) = \mu \cdot \{-[x] - x\}$$

![Graph of h(\varepsilon) and \tilde{h}(\varepsilon)](image)

Figure 14. The Cantor-like function h and the approximation \tilde{h}.

18