V. Fields and Galois Theory

V.1. Field Extensions.

7. If \(v \) is algebraic over \(K(u) \) for some \(u \in F \) and \(v \) is transcendental over \(K \), then \(u \) is algebraic over \(K(v) \).

If \(v \) is algebraic over \(K(u) \), then \(\exists f(x) \in K(u)[x] \) such that \(f(v) = 0 \). Let

\[
f(x) = \sum_{i=0}^{n} \frac{g_i(u)}{h_i(u)} x^i
\]

where \(g_i(x) = \sum_{j=0}^{m} a_{ij} x^j \), for \(a_{ij} \in K, \forall i, j \). Then

\[
f(v) = 0 \implies \sum_{i=0}^{n} g_i(u)v^i = 0 \implies g_i(u) = 0, \forall i
\]
because the \(v^i \) are linearly independent. Then

\[
0 = \sum_{i=0}^{n} g_i(u)v^i = \sum_{i=0}^{n} \sum_{j=0}^{m} a_{ij} u^j v^i = \sum_{j=0}^{m} \sum_{i=0}^{n} a_{ij} u^j v^i = \sum_{j=0}^{m} \phi_j(v) u^j
\]

where \(\phi_j(v) = \sum_{i=0}^{n} a_{ij} v^i \), where \(a_{ij} \in k \). We know that \(\phi_j(v) \neq 0 \) because \(v \) is transcendental over \(K \). This tells us that

\[
\psi(x) = \sum_{j=0}^{m} \phi_j(v) x^j \in K(v)[x]
\]
is a nonzero polynomial. Since \(\psi(u) = 0 \), \(u \) is algebraic over \(K(v) \).

8. If \(u \in F \) is algebraic of odd degree over \(K \), then so is \(u^2 \) and \(K(u) = K(u^2) \).

Was this one even assigned?

9. If \(f(x) = x^n - a \in K[x] \) is irreducible and \(u \in F \) is a root of \(f \) and \(m|n \), then prove that the degree of \(u^m \) over \(K \) is \(\frac{n}{m} \). What is the irreducible polynomial for \(u^m \) over \(K \)?

Since \(n|m \),

\[
h(x) = x^{n/m} - a
\]
is a polynomial in \(K[x] \). Then

\[
h(u^m) = (u^m)^{n/m} - a = u^n - a = 0
\]
shows that \(u^m \) is a root of \(h \). If \(h \) were reducible, then
\[
h_1(x^m)h_2(x^m) = h(x^m) = x^n - a
\]
shows that \(x^n - a \) is reducible \(\not\subset \) hypothesis. Thus, \(h \) is the irreducible polynomial of \(u^m \), and
\[
[K(u^m) : K] = \deg h = \frac{n}{m}
\]

12. If \(d \geq 0 \) is an integer that is not a square, describe the field \(\mathbb{Q}(\sqrt{d}) \) and find a set of elements that generate the whole field.

\(d \) is not a square \(\iff \sqrt{d} \notin \mathbb{Q} \), so the minimal polynomial of \(d \) over \(\mathbb{Q} \) is \(f(x) = x^2 - d \). It is clear that \(f \) is irreducible because it can only have factors of degree 1, and we know that \(f \) factors linearly as \((x - d)(x + d)\) and neither factor is in \(\mathbb{Q}[x] \). Then
\[
\left[\mathbb{Q}(\sqrt{d}) : \mathbb{Q} \right] = \deg f = 2,
\]
so \(\{1, d\} \) is a basis for \(\mathbb{Q}(\sqrt{d}) \) over \(\mathbb{Q} \). Thus,
\[
\mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} : a, b \in \mathbb{Q}\}
\]

13. Note: this was done in lecture, but not assigned.

a) Consider the extension \(\mathbb{Q}(u) \) of \(\mathbb{Q} \) generated by a real root of \(f(x) = x^3 - 6x^2 + 9x + 3 \). Express each of the following in terms of the basis \(\{1, u, u^2\} \): \(u^4, u^5 \). To see that \(f \) is irreducible over \(\mathbb{Q} \), it suffices to show that \(f \) is irreducible over \(\mathbb{Z} \), by III.6.13. But \(f \) is irreducible over \(\mathbb{Z} \), by Eisenstein’s Criterion with \(p = 3 \).

Now \(u^3 = 6u^2 - 9u - 3 \) by construction, so
\[
u^4 = 6u^3 - 9u^2 - 3u
\]
\[
= 6(6u^2 - 9u - 3) - 9u^2 - 3u
\]
\[
= 36u^2 - 45u - 18 - 9u^2 - 3u
\]
\[
= 27u^2 - 48u - 18
\]
Then
\[
u^5 = 27u^3 - 48u^2 - 18u
\]
\[
= 27(6u^2 - 9u - 3) - 48u^2 - 18u
\]
\[
= 162u^2 - 243u - 81 - 48u^2 - 18u
\]
\[
= 114u^2 - 261u - 81
\]
14. Note: this was done in lecture, but not assigned.

a) If \(F = \mathbb{Q}(\sqrt{2}, \sqrt{3}) \), find \([F : \mathbb{Q}]\) and a basis of \(F \) over \(\mathbb{Q} \).

 The irreducible polynomial of \(\sqrt{3} \) over \(\mathbb{Q} \) is \(x^2 - 3 \), so \([\mathbb{Q}(\sqrt{3}) : \mathbb{Q}] = 2\). Then the irreducible polynomial of \(\sqrt{2} \) over \(\mathbb{Q}(\sqrt{3}) \) is \(x^2 - 2 \), so \([\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}(\sqrt{3})] = 2\).

 To see that \(\sqrt{2} \notin \mathbb{Q}(\sqrt{3}) \), suppose it were: then \(\sqrt{2} = a + b\sqrt{3} \), for some \(a, b \in \mathbb{Q} \).

 \[
 \sqrt{2} = a + b\sqrt{3} \Rightarrow 2 = a^2 + 2b\sqrt{3} + 3b^2,
 \]
 which is clearly impossible. Hence, \([\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = 2 \cdot 2 = 4\).

b) If \(F = \mathbb{Q}(i, \sqrt{3}, \omega) \), where \(i = \sqrt{-1} \) and \(\omega \) is a nonreal cube root of 1, find \([F : \mathbb{Q}]\) and a basis of \(F \) over \(\mathbb{Q} \).

 \(i \) has irreducible polynomial \(x^2 + 1 \) over \(\mathbb{Q} \), so \([\mathbb{Q}(i) : \mathbb{Q}] = 2\). Then the irreducible polynomial of \(\sqrt{3} \) over \(\mathbb{Q}(i) \) is \(x^2 - 3 \in \mathbb{Q}(i)[x] \), so

 \[
 [\mathbb{Q}(i, \sqrt{3}) : \mathbb{Q}(i)] = [\mathbb{Q}(i, \sqrt{3}) : \mathbb{Q}(i)] \cdot [\mathbb{Q}(i) : \mathbb{Q}] = 2 \cdot 2 = 4
 \]

 Since \(i \) and \(\sqrt{3} \) are linearly independent, \(\{1, i, \sqrt{3}\} \) is a basis of \(\mathbb{Q}(i, \sqrt{3}) \) over \(\mathbb{Q} \). Now notice that \(\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \in \mathbb{Q}(i, \sqrt{3}) \), so \(\mathbb{Q}(i, \sqrt{3}, \omega) = \mathbb{Q}(i, \sqrt{3}) \).

15. In the field \(K(x) \), let \(u = \frac{x^3}{x^2+1} \). Show that \(K(x) \) is a simple extension of the field \(K(u) \). What is \([K(x) : K(u)]\)?

 Let

 \[
 f(y) = y^3 - \frac{x^3}{x^2+1}(y+1) = y^3 - \frac{x^3}{x^2+1}y - \frac{x^3}{x^2+1} \in K(u)[y]
 \]
 so that \(x \) is a root of \(f \). Then \(f \) is irreducible by Eisenstein’s Criterion, with \(p = \frac{x^3}{x^2+1} \in K(u) \). Then

 \[
 [K(x) : K(u)] = \deg f = 3
 \]
 and \(\{1, x, x^2\} \) is a basis of \(K(x) \) over \(K(u) \). Also note that

 \[
 K(x) = K(x, \frac{x^3}{x^2+1}) = K\left(\frac{x^3}{x^2+1}\right)(x),
 \]
 so \(K(x) \) is a simple extension of \(K(u) \). \(\blacksquare\)
17. Find an irreducible polynomial f of degree 2 over the field \mathbb{Z}_2? Adjoin a root u of f to \mathbb{Z}_2 to obtain a field $\mathbb{Z}_2(u)$ of order 4. Use the same method to construct a field of order 8.

Let u be a root of $f(x) = x^2 + x + 1$. f is irreducible because $f(0) = 1$ and $f(1) = 3 \equiv_2 1$, so f has no linear factors in $\mathbb{Z}_2[x]$. Hence, $\mathbb{Z}_2(u) = \{0, 1, u, 1 + u\}$.

To construct a field of order 8, we need to adjoin the root of an irreducible cubic. Define $g(x) = x^3 + x + 1$. Then g is irreducible because $g(0) = 1$ and $g(1) = 3 \equiv_2 1$, so g has no linear factors in $\mathbb{Z}_2[x]$.

\[\begin{array}{cccc}
+ & 0 & 1 & u & 1+u \\
0 & 0 & 1 & u & 1+u \\
1 & 1 & 0 & 1+u & u \\
u & u & 1+u & 0 & 1 \\
1+u & 1+u & u & 1 & 0
\end{array}\]

\[\begin{array}{cccc}
\times & 0 & 1 & u & 1+u \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & u & 1+u \\
u & 0 & u & 1+u & 1 \\
1+u & 0 & 1+u & 1 & u
\end{array}\]

\[\]
22. F is an algebraic \iff for every intermediate field E, every monomorphism \(\sigma : E \to E \) which is the identity on K is in fact an automorphism of E.

\[\iff \]

Let \(E \) be an intermediate field of the extension \(F : K \), and let \(\sigma : E \to E \) be a monomorphism fixing K. We need to show that \(\sigma \) is surjective, so pick \(u \in E \setminus K \) and find its preimage under \(\sigma \). Since \(F : K \) is algebraic and \(u \in E \subset F \), \(u \) must be algebraic over \(K \). Then let \(f \) be the irreducible polynomial of \(u \). Now \(f(u) = \sum_{i=0}^{n} a_i u^i = 0 \) implies that

\[
\begin{align*}
\sigma f(u) &= \sigma \left(\sum_{i=0}^{n} a_i u^i \right) \\
&= \sum_{i=0}^{n} \sigma(a_i) u^i \\
&= \sum_{i=0}^{n} \sigma(a_i) \sigma(u)^i \\
&= \sum_{i=0}^{n} a_i \sigma(u)^i \\
&= 0,
\end{align*}
\]

showing that \(\sigma(u) \) is also a root of \(f \), by the ring-homomorphism properties of \(\sigma \). Since \(f \) can only have finitely many roots,

\[
\left| \{ \sigma^k(u) : k \in \mathbb{N} \} \right| = n < \infty.
\]

Since \(\sigma : E \to E \), we know \(\sigma^k(u) \in E, \forall k \). Hence, \(\sigma^{n-1}(u) \in E \). Then

\[
\sigma\left(\sigma^{n-1}(u) \right) = \sigma^n(u) = u
\]

shows that \(\sigma^{n-1}(u) \) is in the preimage of \(u \). Since this is true for any \(u \in E \), \(\sigma \) must be surjective.

\[\iff \]

Strategy: suppose \(F : K \) is not algebraic and find a \(\sigma \) which is not surjective.

If \(F : K \) is transcendental, then there is some \(u \in F \setminus K \) which is not the root of any polynomial in \(K[x] \). \(K(u) \) has basis \(\{1, u, u^2, \ldots\} \) over \(K \), so the action of any \(\sigma \) fixing \(K \) is completely determined by its action on \(u^2 \). Define \(\sigma : K(u) \to K(u) \) by \(\sigma(u) = u^2 \). Then \(u \) can have no preimage under \(\sigma \). If it did, then \(\exists v \in K(u) \) such that \(\sigma(v) = u \). Then

\[
v = a_0 + a_1 u + \ldots + a_n u^n = \sum_{i=0}^{n} a_i u^i, \quad a_i \in K
\]

because \(v \in K(u) \). Also,

\[
\sigma(v) = \sum_{i=0}^{n} \sigma(a_i) u^i = \sum_{i=0}^{n} a_i \sigma(u)^i = \sum_{i=0}^{n} a_i u^{2i}
\]

But this would imply that \(u \) is a root of

\[
f(x) = \left(\sum_{i=0}^{n} a_i x^{2i} \right) - x \in K[x]
\]

\(\Downarrow u \) is transcendental.

\[\footnote{All other \(u^i \) will be determined by the image of \(u \) under \(\sigma \): \(\sigma(u^i) = \sigma^i(u) \)} \]
Alternative proof for 23: Pick \(u \in E \), where \(E \) is any intermediate field of the extension \(F : K \). Let \(\sigma : K \rightarrow id \rightarrow K \) be the identity. Then we can extend this to a homomorphism \(\sigma : K(U) \rightarrow K(u) \) by defining \(\sigma(\frac{f(u)}{g(u)}) = \frac{f(u^2)}{g(u^2)} \) for any element \(v = \frac{f(u)}{g(u)} \in E \setminus K \). Now\

\[
\sigma\left(\frac{f_1(u)}{g_1(u)} + f_2(u)g_2(u)\right) = \sigma\left(\frac{f_1(u)g_2(u) + f_2(u)g_1(u)}{g_1(u)g_2(u)}\right) = \frac{f_1(u^2)g_2(u^2) + f_2(u^2)g_1(u^2)}{g_1(u^2)g_2(u^2)}
\]

\[
\sigma\left(\frac{f_1(u)}{g_1(u)} + f_2(u)g_2(u)\right) = \sigma\left(\frac{f_1(u^2)}{g_1(u^2)} + f_2(u^2)g_2(u^2)\right) = \frac{f_1(u^2)g_2(u^2) + f_2(u^2)g_1(u^2)}{g_1(u^2)g_2(u^2)}
\]

\[
\sigma\left(\frac{f_1(u)g_2(u)}{g_1(u)g_2(u)}\right) = \frac{f_1(u^2)g_2(u^2)}{g_1(u^2)g_2(u^2)} = \frac{f_1(u^2)}{g_1(u^2)} \cdot \frac{f_2(u^2)}{g_2(u^2)} = \sigma\left(\frac{f_1(u)}{g_1(u)} \cdot \sigma\left(\frac{f_2(u)}{g_2(u)}\right)\right)
\]

shows that \(\sigma \) is a homomorphism.

Case i) \(\sigma \) is not injective. Then \(\exists f(u) \neq 0 \), where \(f(u) \neq 0 \).

So \(f(u^2) = 0 \) shows that \(u \) is algebraic over \(K \).

Case ii) \(\sigma \) is injective. Then the hypotheses give that \(\sigma \) is also surjective, so there is some \(f(u) \neq 0 \) such that \(\sigma\left(\frac{f(u)}{g(u)}\right) = \frac{f(u^2)}{g(u^2)} = u \). Then \(f(u^2) - ug(u^2) = 0 \) shows that \(u \) is algebraic over \(K \), because \(u \) is a root of \(h(x) = f(x^2) - xg(x^2) \in K[x] \).

\[\blacksquare\]

23. If \(u \in F \) is algebraic over \(K(U) \) for some \(U \subset F \), then there exists a finite subset \(U' \subset U \) such that \(u \) is algebraic over \(U' \).

If \(u \) is algebraic over \(K(U) \), then \(u \) is the root of some irreducible polynomial

\[
\varphi(x) = \sum_{i=0}^{n} \frac{f_i(u_1,\ldots,u_m)}{g_i(u_1,\ldots,u_m)} x^i
\]

\[
= \frac{f_0(u_1,\ldots,u_m)}{g_0(u_1,\ldots,u_m)} + \frac{f_1(u_1,\ldots,u_m)}{g_1(u_1,\ldots,u_m)} x + \ldots + \frac{f_n(u_1,\ldots,u_m)}{g_n(u_1,\ldots,u_m)} x^n \in K(U)[x]
\]

Let \(U' = \{u_1, \ldots, u_m\} \). Then \(U' \) is clearly finite, and \(u \) is algebraic over \(K(U') \) by construction.