1. (08/22) Describe the nilpotent elements of $M_{n \times n}(F)$, where F is a field.

2. (08/22) Construct a (commutative) ring R and ideal I of R such that $I \subseteq \mathfrak{m}$ and $I^k \neq 0$ for all $k > 0$.

3. (8/24) Let F be a field. What relationship, if any, is there between the Zariski topology on Spec $F[x_1,\ldots,x_n]$ and the usual Zariski topology on F^n?

4. (8/24) For which $y \in \mathbb{Z}_p$ does there exist $x \in \mathbb{Z}_p$ with $x^2 = y$?

5. (8/29) Let $H_0 : \mathbb{N} \to \mathbb{N}$ be eventually equal to a degree n polynomial f. Then there exists $h \in \mathbb{Z}[\lambda]$ such that the power series

$$
\sum_{i=0}^{\infty} H(i) \lambda^i = \frac{h(\lambda)}{(1 - \lambda)^n}.
$$

Furthermore, there exist other H' which are also eventually equal to f, but whose corresponding h' has arbitrarily high degree.

6. (8/29) Let Q be a finite poset. Define f_i to be the number of chains in Q of length i. Let $M = F[x_a : a \in Q]/I_Q$, where as before I_Q is the ideal generated by the monomials $x_a x_b$, a,b not comparable in Q. Compute the Hilbert polynomial in terms of the f_i.

7. (8/29) What polynomials are the Hilbert polynomials of finitely generated modules over $F[x_1,\ldots,x_n], F$ a field?

8. (8/31) Write down the definition of the left-derived functors of a covariant right-exact functor. Using only the definition, prove that $R^0 \mathfrak{S}(M) = \mathfrak{S}(M)$ for any contravariant left-exact additive functor from R-mod to R-mod.

9. (9/05) Compute $\text{Ext}^i(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$ for all $m,n,i \in \mathbb{N}$. Show that if $M \oplus N$ is a free module, then $\text{Ext}^i(M, L) = \text{Ext}^i(N, L) = 0$ for all $i \geq 1$ and R-modules L.

10. (9/07) An extension of M by N is a short exact sequence

$$
0 \to N \to E \to M \to 0.
$$

Two extensions are equivalent if there is a commutative diagram

$$
\begin{array}{cccc}
0 & \to & N & \to & E & \to & M & \to & 0 \\
\downarrow{id} & & \downarrow{\phi} & & \downarrow{id} & & \\
0 & \to & N & \to & E' & \to & M & \to & 0.
\end{array}
$$

(a) If two extensions of M by N are equivalent, then ϕ is an isomorphism.

(b) There is a bijection between the set of equivalence classes of extensions of M by N and $\text{Ext}^1(M, N)$.

11. (9/10) We have defined $\text{Ext}^i(M, N)$ as the right-derived functor of the left-exact contravariant functor $\text{Hom}(\ast, N)$. Define $\overline{\text{Ext}}^i$ as the right-derived functor of the left-exact covariant functor $\text{Hom}(M, \ast)$. Prove that $\text{Ext}^i(M, N) \simeq \overline{\text{Ext}}^i(M, N)$.

12. (9/12) Prove the existence of injective resolutions in the category of graded R-modules. See Eisenbud, Exerc. A3.5.

13. (9/14)

(a) Prove that $\text{Tor}_i(M, N) \simeq \text{Tor}_i(N, M)$.

(b) Let r be a nonzero divisor of R. Compute $\text{Tor}_i(R/(r), M)$.

(c) Let I, J be ideals of R. What is $\text{Tor}_1(R/I, R/J)$?

14. (9/17) Let $R = \bigoplus_{i \geq 0} R_i$ be a graded Noetherian ring and M a finitely generated graded R-module.

(a) (Graded Nakayama’s Lemma) Let $I = \bigoplus_{i \geq 1}$. If $M \subseteq IM$, then $M = 0$.

15. (9/22) Let I be an ideal of R. Except for part (15a), assume R is Noetherian and M is f.g. R-module. Define $\mathfrak{H}_I(M) = \{x \in M : \exists n, I^n x = \{0\}\}$ and given $f : M \to N$ define $\mathfrak{H}_I(f)$ to be the restriction of f to $\mathfrak{H}_I(M)$.

(a) \mathfrak{H}_I is a left-exact covariant functor. If R is a graded ring and M and N are graded submodules, then $\mathfrak{H}_I(M)$ and $\mathfrak{H}_I(N)$ are graded and $\mathfrak{H}_I(f)$ is a graded homomorphism. Denote the right-derived functors of \mathfrak{H}_I by $\mathfrak{H}_I^j(M)$.

(b) A sequence (r_1, \ldots, r_n) of elements of R is called a regular sequence of length n for M if
 - For all $1 \leq i \leq n$ the map $r_i : M/(< r_1, \ldots, r_{i-1} > M) \to M/(< r_1, \ldots, r_{i-1} > M)$ given by $x \to r_i x$ is injective.
 - The quotient module $M/ < r_1, \ldots, r_n > M$ is not zero.

Prove that if $M \neq 0$ and $H^j_I(M) = \cdots = H^0_I(M) = 0$, then there exists a regular sequence of length $n+1$ all of whose elements are in I.

[Note: As stated this is not quite true. For instance, $R = \mathbb{Z}, I = 2\mathbb{Z}$ and $M = \mathbb{Z}/5\mathbb{Z}$. While $H^0_I(M) = 0$, no nonzero element of I satisfies the second condition. Can you think of a reasonable restriction on I so that it is true? It should include ideals of local rings and graded ideals of graded rings.]

(c) Suppose that $R = \bigoplus_{i=0}^{\infty} R_i$ is a graded ring, M is a graded module and $I = \bigoplus_{i=1}^{\infty} R_i$ is the irrelevant ideal. Then the Hilbert polynomial of $H^0_I(M)$ is zero.

(d) In addition to the assumptions of the previous problem, assume that R_0 is a field. Show that $H^0_I(M) \simeq H^0_I(M/H^0_I(M))$ for all $i \geq 1$.

16. (9/24) Let R be a graded ring and M a graded R-module. If $P = \text{ann}(x), x \in M$ is prime, the P is a graded ideal of R. What if P is not prime?

17. (10/01) Let $f : R \to S$ be a ring homomorphism such that $f^\ast : \text{Spec} S \to \text{Spec} R$ is a closed map. Show that f satisfies the Cohen-Seidenberg going up lemma. Prove that the converse holds if S is Noetherian. What if S is not Noetherian?

18. (10/03) Graded Noether normalization. Let R be a f.g. k-algebra, k a field. Then for any set of generators x_1, \ldots, x_n we can order them so that x_1, \ldots, x_r are algebraically independent over k and R is algebraic over $k[x_1, \ldots, x_r]$. Our proof of Noether normalization showed how to find $x_1', \ldots, x_r', x_{r+1}, \ldots, x_n$ so that x_n is integral over $k[x_1', \ldots, x_r']$.

(a) If k is infinite, then the x_i' can be chosen to be k-linear combinations of x_1, \ldots, x_r, x_n.

(b) If k is infinite, R graded, $R_0 = k$ and R generated by R_1, then the x_i (in the conclusion - i.e. R is integral over $k[x_1, \ldots, x_r]$ and x_1, \ldots, x_n generate R) can be chosen to be in R_1.

19. (10/05) State and prove a uniqueness theorem for the valuation associated to a valuation ring.

20. (10/24)

(a) Let R be a PID which is not a field. Then $\dim R[x] = 2$.

(b) Let k be algebraically closed and f an irreducible polynomial in $R = k[x, y]$. The $R/(f)$ is a Dedekind ring if and only if f is nonsingular.

21. (10/29) Let R be a Noetherian ring. Then $\dim R[x] = \dim R + 1$.

22. (10/29) For any R, $\dim R[x] \leq 1 + 2 \dim R$.

23. (10/31) - Alternative to Problem 20b Let f be an irreducible polynomial in $k[x_1, \ldots, x_n], k$ algebraically closed and let $R = k[x_1, \ldots, x_n]/(f)$. Prove that the following are equivalent:
 (1) For every maximal ideal \mathfrak{m} of R, $R_{\mathfrak{m}}$ is a regular local ring.
 (2) f is nonsingular.
24. (11/02) Let R be a standard graded Noetherian k-algebra, k a field. Define the graded dimension of R to be the length of a maximal chain of graded prime ideals. Prove that the graded dimension of R equals the usual dimension of R. Corollary - the order of the pole of one for the Hilbert series of R equals the dimension of R.

25. (11/09) Let k be a field and Δ be an d-dimensional simplicial complex with vertices $\{1, \ldots, n\} = [n]$. The face ring, also known as the Stanley-Reisner ring, of Δ is

$$k[\Delta] = k[x_1, \ldots, x_n]/I_\Delta,$$

$$I_\Delta = <x_{i_1} \cdots x_{i_m} : \{i_1, \ldots, i_m\} \notin \Delta>.$$

Prove that $\dim k[\Delta] = d + 1$.

26. (11/14) Let R be a Noetherian local ring and M a f.g. R-module. Then $\text{depth } M = \text{depth } \hat{M}$.

27. (11/16) Let R be a local Noetherian ring and M a f.g. R-module. Let P be an associated prime of M and $I \subseteq P$. Prove that the annihilator of M/IM is contained in P.

Optional addition: What is the best theorem you can prove along these lines?

28. (11/19) T/F. Let M be a f.g. Cohen-Macaulay module over a Noetherian ring R. If (x_1, \ldots, x_n) is a maximal regular sequence for M, then for all $1 \leq i \leq n$ the quotient module $M/(x_1, \ldots, x_i)M$ is Cohen-Macaulay.

Updated November 20, 2012.