1. Show that any acyclic orientation of a (finite) graph has at least one source and one sink.

2. Find polytopes P and Q such that $G(P)$ is isomorphic to $G(Q)$ and $\dim P \neq \dim Q$.

3. A different approach to the chromatic polynomial is through deletion-contraction. Let G be a graph. It may have parallel edges (more than one edge between a pair of vertices) and/or loops. Define $\chi_G(\lambda)$ as before. If G has a loop, then $\chi(G) \equiv 0$. Let e be an edge of G. The deletion of e, denoted $G - e$, is the graph obtained by removing the edge e. The contraction of G along e, denoted G/e is the graph obtained by contracting the edge down to a vertex and identifying the two vertices of the edge down to one vertex. This may introduce loops and/or parallel edges. For instance, if G is a triangle, then the contraction of G along any of its edges is a graph with two vertices and two parallel edges. Prove that for any edge e of a loopless graph,

$$\chi_G(\lambda) = \chi_{G-e}(\lambda) - \chi_{G/e}(\lambda).$$

Use this to show that the signs of the coefficients of $\chi_G(\lambda)$ alternate in sign.