1. Let $G \subseteq F$ be two faces of a polytope. Prove that there exists a polytope Q such that the interval $[G, F]$ in $\mathcal{F}(P)$ is isomorphic to $\mathcal{F}(Q)$.

2. Let P be a polytope. Prove that $\mathcal{F}(P)$ is graded and that for any face F of P the rank of F is equal to $\dim F + 1$.

3. Prove that if P is a polytope, then $\mathcal{F}(P)$ is an Eulerian poset.

4. Problem 45 and Cor. 6.1.1 of the ‘text’.

5. Establish the Möbius inversion formulas.