Math 4550 Questions for March 8, 2011

1. Prove that Stanley’s trick works. What is the h to f version of Stanley’s trick?

2. Let G be a simple graph with n edges and v vertices. Let Δ be the abstract simplicial complex whose vertices are the edges of G and whose faces are those subsets of edges whose removal does NOT disconnect the graph. Now assume that each edge has independent probability p, $0 < p < 1$ of being removed. Prove that the probability that the graph remains connected is

\[(1 - p)^{v-1}[h_0 + h_1p + \cdots + h_{n-v+1}p^{n-v+1}],\]

where (h_0, \ldots, h_{n-v+1}) is the h-vector of Δ. (You may assume that Δ is shellable. Also, you may assume that any connected graph with v vertices has at least $v - 1$ edges and that any subgraph of G which contains less than $v - 1$ edges is disconnected.)

3. Problem 30 of the ‘text’.

4. Let G be a connected graph. Let Δ be the abstract simplicial complex whose vertices are the vertices of G and whose faces are the empty set, the vertices of G and all pairs $\{p, q\}$ when $\{p, q\}$ is an edge of G. Prove that G is shellable.