
1. Let $A \subseteq \mathbb{R}^d$ be an affine subspace, $A = W + v = W' + v'$, W and W' linear subspaces of \mathbb{R}^d. Prove that $W = W'$. Show that for any $y \in A$, $A + (-y) = W$.

2. Let $A \subseteq \mathbb{R}^d$. Show that the affine span of A equals the set of all possible affine combinations of elements of A.

3. Let H be a linear subspace of \mathbb{R}^d of dimension $d - 1$. If A is a linear subspace of \mathbb{R}^d and $A \not\subseteq H$, then $\dim A \cap H = \dim A - 1$.

4. Prove that $A = \{x_1, \ldots, x_n\} \subseteq \mathbb{R}^d$ is affinely independent if and only if no x_i is an affine combination of the other elements of A.

5. Let K be a convex subset of \mathbb{R}^d and $f : \mathbb{R}^d \to \mathbb{R}^e$ be an affine map. Is $f(K)$ convex? If K is a convex subset of \mathbb{R}^e is $f^{-1}(K)$ a convex subset of \mathbb{R}^d?

6. Prove that if $A \subseteq \mathbb{R}^d$, then the convex hull of A consists of all convex combinations of elements of A.

7. Let $A \subseteq \mathbb{R}^d$ and $y \in ch(A)$. Prove that there exists x_1, \ldots, x_{d+1} such that $y \in ch(x_1, \ldots, x_{d+1})$.

8. Let Δ be a d-simplex in \mathbb{R}^e. Prove that there exists an affine map $f : \mathbb{R}^{d+1} \to \mathbb{R}^e$ such that $f(\Delta^d) = \Delta$ and f is a bijection when restricted to Δ^d.