Math 4550 HW9 - April 14, 2011

Question 1

First we show that π_n is isomorphic to L_{K_n}, the poset of vertex-induced subgraphs of the complete graph on n vertices. Label the vertices of K_n with the elements of $[n]$. Then we define our isomorphism by mapping an element $\{A_1, \ldots, A_m\} \in \pi_n$ to the subgraph of K_n consisting of all of the edges between the vertices in A_i for $1 \leq i \leq m$. From its definition this map is one to one. Since K_n contains an edge between each pair of vertices, any component of any element of L_{K_n} must contain all of the edges between the vertices in the component. Hence our map is onto. Under our bijection, refining a partition in π_n corresponds to removing edges in L_{K_n}, so our identification is order preserving in both directions and hence an isomorphism.

Note that K_n has no proper λ-coloring for $\lambda < n$. Hence $1, 2, \ldots, n - 1$ are all roots of $\chi_{K_n}(\lambda)$. Also, K_n has only one component, so by the discussion following Problem 48, $\chi_{K_n}(\lambda)$ is a polynomial of degree $|K_n| = n$ and contains λ as a factor. By Problem 48 the coefficient of λ^n in $\chi_{K_n}(\lambda)$ is $\mu(\hat{0}, \hat{0}) = 1$. Hence

$$\chi_{K_n}(\lambda) = \lambda \prod_{i=1}^{n-1} (\lambda - i).$$

Using the discussion following Problem 48, the coefficient of $\lambda^{c(K_n)} = \lambda^1$ in $\chi_{K_n}(\lambda)$ is $\mu(\hat{0}, \hat{1})$. Hence

$$\mu(\hat{0}, \hat{1}) = \prod_{i=1}^{n-1} (-i) = (-1)^{n-1}(n-1)!.$$

Question 3

First note that by Problem 53, any zonotope is centrally symmetric (up to a translation). Therefore any n-gon that is not centrally symmetric, in particular any n-gon where n is odd, is not a zonotope. Since all 2-polytopes are n-gons for some n, the only polytopes that are combinatorially isomorphic to n-gons are other n-gons, so we have one direction of the result.

Now let P be a centrally symmetric $2n$-gon centered at the origin. Label the vertices of P cyclically as $x_1, \ldots, x_n, x_{n+1}, \ldots, x_{2n}$, so that $x_{i+n} = -x_i$ for $1 \leq i \leq n$. We will show that
P is a zonotope by proving that it is equal to the Minkowski sum

$$Z = \left[-\frac{x_2 - x_1}{2}, \frac{x_2 - x_1}{2} \right] + \cdots + \left[-\frac{x_{n+1} - x_n}{2}, \frac{x_{n+1} - x_n}{2} \right].$$

For intuition, note that the intervals defining Z are parallel to a sequence of n consecutive edges of P.

First we show that $P \subseteq Z$. Since $x_{n-1} = -x_1$ we have

$$x_1 = -\frac{x_2 - x_1}{2} - \frac{x_3 - x_2}{2} - \cdots - \frac{x_{n+1} - x_n}{2},$$

so $x_1 \in Z$. Switching the ith term in this sum from negative to positive adds $x_{i+1} - x_i$ to the sum. Hence switching the signs of all of the first k terms for $1 \leq k \leq n$ gives the point x_{k+1}. By the central symmetry of Z, all the x_i with $n+1 < i \leq 2n$ are also in Z. Since Z is convex and contains all of the vertices of P, $P \subseteq Z$.

Now we show that $Z \subseteq P$. Fix any non-trivial closed half-space $H_{a,b}$ containing P. We must show $Z \subseteq H_{a,b}$. Since the origin is in the interior of P, by scaling and rotating, we can assume WLOG that $H_{a,b} = \{x = 1\}$.

We want to determine the maximum possible x-coordinate of any point in Z. To obtain this point, for each interval in the definition Z we take the endpoint that has a positive x-coordinate (or either endpoint if their x-coordinates are zero) and we sum these points. Recall that the intervals defining Z are parallel to a sequence of n consecutive edges of P. Since P is convex, in this sequence of n consecutive edges there can be at most one sign change in the x-coordinates. If there are no sign changes then our sum telescopes so the maximum x-coordinate is given by the magnitude of the x-coordinate of x_1. If there is a sign change between the $(i-1)$st and ith term in the sum then again the sum telescopes and the maximum x-coordinate is given by the magnitude of the x-coordinate of x_i. Since P is in the half-space $x \leq 1$, by central symmetry P is also in the half-space $x \geq -1$. So the x-coordinate of all of the x_i is in $[-1, 1]$, and hence the x-coordinate of any point in Z is at most one, as desired.