Math 4550 HW2 - Feb. 10, 2011

Question 2

\(\mathcal{V} \)-polytopes:

Let \(P = \text{ch}\{x_1, \ldots, x_n\} \) be a \(\mathcal{V} \)-polytope in \(\mathbb{R}^d \). For \(1 \leq i \leq n \), define \(y_i = \binom{x_i}{0} \in \mathbb{R}^{d+1} \) and \(z_i = \binom{x_i}{1} \in \mathbb{R}^{d+1} \). We claim that \(\text{prism}(P) = \text{ch}\{y_1, \ldots, y_n, z_1, \ldots, z_n\} \).

\(\subseteq \) Let \(v = (v_1, \ldots, v_{d+1}) \in \text{prism}(P) \). Then \(v' := (v_1, \ldots, v_d) \in P \). Hence there exist \(a_i \geq 0 \) such that

\[v' = \sum_{i=1}^{n} a_i x_i \quad \text{and} \quad \sum_{i=1}^{n} a_i = 1. \]

It is then straightforward to check coordinate by coordinate that we have the equality

\[v = \sum_{i=1}^{n} a_i ((1 - v_{d+1}) y_i + v_{d+1} z_i). \]

From the definition of \(\text{prism}(P) \) we know \(0 \leq v_{d+1} \leq 1 \). Hence all of the coefficients in the above sum are non-negative and add to one, showing that \(v \in \text{ch}\{y_1, \ldots, y_n, z_1, \ldots, z_n\} \).

\(\supseteq \) Let \(v = (v_1, \ldots, v_{d+1}) \in \text{ch}\{y_1, \ldots, y_n, z_1, \ldots, z_n\} \). Then there exist \(a_i, b_i \geq 0 \) such that

\[v = \sum_{i=1}^{n} a_i y_i + \sum_{i=1}^{n} b_i z_i \quad \text{and} \quad \sum_{i=1}^{n} (a_i + b_i) = 1. \]

Let \(v' = (v_1, \ldots, v_d) \). Considering only the first \(d \) coordinates, the above expression for \(v \) reduces to

\[v' = \sum_{i=1}^{n} a_i x_i + \sum_{i=1}^{n} b_i x_i = \sum_{i=1}^{n} (a_i + b_i) x_i. \]

Therefore \(v' \in \text{prism}(P) \). From the definition of the \(y_i \) and \(z_i \) we know that the \((d + 1) \)st coordinate to \(v \) is equal to \(\sum_{i=1}^{n} b_i \), which is in \([0, 1]\) from our definition of the \(a_i \) and \(b_i \). Hence \(v \in \text{prism}(P) \), as claimed.

\(\mathcal{H} \)-polytopes:

Let \(P = \cap_{i=1}^{n} H_{a_i, b_i} \) be an \(\mathcal{H} \)-polytope in \(\mathbb{R}^d \). For \(1 \leq i \leq n \) define \(a_i = \binom{a_i'}{0} \in \mathbb{R}^{d+1} \). Note that if \(v' \in \mathbb{R}^d \) and \(v = \binom{v'}{k} \in \mathbb{R}^{d+1} \), then for any \(k \in \mathbb{R} \) we have \(v' \cdot a_i' = v \cdot a_i \). Hence \(v' \in P \) iff \(v \in \cap_{i=1}^{n} H_{a_i, b_i} \).

We claim that \(\text{prism}(P) = \cap_{i=1}^{n} H_{a_i, b_i} \cap H_{e_{d+1}, 0} \cap H_{-e_{d+1}, -1}. \)
Let \(\mathbf{v} = (v_1, \ldots, v_{d+1}) \) and let \(\mathbf{v}' = (v_1, \ldots, v_d) \). Then:

\[
\mathbf{v} \in \text{prism}(P) \iff \mathbf{v}' \in P \text{ and } 0 \leq v_{d+1} \leq 1
\]

By the definition of prism\((P)\).

\[
\iff \mathbf{v} \in \bigcap_{i=1}^n H_{a_i, b_i} \text{ and } 0 \leq v_{d+1} \leq 1
\]

By the above discussion.

\[
\iff \mathbf{v} \in \bigcap_{i=1}^n H_{a_i, b_i} \cap H_{e_{d+1}, 0} \cap H_{-e_{d+1}, -1}
\]

By the definition of \(H_{a,b} \).

To complete the proof we must show that prism\((P)\) is bounded. Since \(P \) is a polytope, the first \(d \) coordinates of any vector in prism\((P)\) are bounded. The last coordinate is in \([0,1]\) by the definition of prism\((P)\) and hence bounded.

Question 3

Let \(P = \text{ch}\{x_1, \ldots, x_n\} \) be a \(\mathcal{V} \)-polytope in \(\mathbb{R}^d \). Define the map \(f : \mathbb{R}^n \to \mathbb{R}^d \) by \(f(y) = A(y) \) where \(A \) is the \(d \times n \) matrix whose columns are the \(x_i \). Then \(f \) is a linear map and hence an affine map. We claim that \(f(\Delta^{n-1}) = P \).

\[\supseteq \] Let \(\mathbf{v} \in P = \text{ch}\{x_1, \ldots, x_n\} \). Then there exist \(a_i \geq 0 \) such that

\[
\mathbf{v} = \sum_{i=1}^n a_i x_i \quad \text{and} \quad \sum_{i=1}^n a_i = 1.
\]

Let \(\mathbf{v}' = \sum_{i=1}^n a_i e_i \in \Delta^{n-1} \). Then

\[
f(\mathbf{v}') = A(\sum_{i=1}^n a_i e_i) = \sum_{i=1}^n a_i A(e_i) = \sum_{i=1}^n a_i x_i = \mathbf{v}.
\]

Hence \(\mathbf{v} \in f(\Delta^{n-1}) \).

\[\subseteq \] Let \(\mathbf{v}' \in \Delta^{n-1} \). Then by the definition of \(\Delta^{n-1} \) we know \(\mathbf{v}' = \sum_{i=1}^n a_i e_i \) where \(a_i \geq 0 \) and \(\sum_{i=1}^n a_i = 1 \). By the above calculation, \(f(\mathbf{v}') = \sum_{i=1}^n a_i x_i \in \text{ch}\{x_1, \ldots, x_n\} = P \), as desired.

Alternatively, for \(1 \leq i \leq n \), we have \(e_i \in \Delta^{n-1} \) and \(f(e_i) = x_i \). By Question 1.5 we know that the affine image of a convex set is convex. Therefore, \(f(\Delta^{n-1}) \) is a convex set containing all of the \(x_i \). Since \(P = \text{ch}\{x_1, \ldots, x_n\} \) is the smallest convex set containing all of the \(x_i \) we have the desired containment.