Problem 1: 2.52i,vii,ix
Let G be a group. Are the following statements true or false, justify.

i. If H is a subgroup of K and K is a subgroup of G, then H is a subgroup of G.

Solution: By 2.68, given $x, y \in H$, then $xy^{-1} \in H$. Since inverses in K must be inverses in G and G, K have the same operation, then $xy^{-1} \in H$ still when considered in G. Hence $H \leq G$ by 2.68.

vii. The intersection of two cyclic subgroup of G is a cyclic subgroup.

Solution: True:
Proof. Let H, K be cyclic subgroups of a group G. Then $H \cap K$ is again a subgroup of G. By proposition 2.75, every subgroup of a cyclic group is cyclic, so $H \cap K$ is cyclic. \[\square\]

ix. If X is an infinite set, then:

$$F = \{\sigma \in S_X : \sigma \text{ moves only finitely many elements of } X\}$$

is a subgroup of S_X.

Solution: True.

Proof. Suppose $\sigma, \tau \in F$. Let $x \in X$ such that σ, τ fix x. Then $\sigma \tau(x) = x$. If F_σ is the fixed set1 of σ and F_τ is the fixed set of τ. There are only finitely many elements of X which are not in F_σ or F_τ, so all but finitely many elements of X are in F_σ and F_τ because X is infinite. As we showed before, every element of $F_\sigma \cap F_\tau$ is fixed by $\sigma \tau$, so $\sigma \tau \in F$.

Suppose $\sigma \in F$. If $\sigma(x) = x$, then $\sigma^{-1}(x) = x$. Hence the fixed set of σ is contained in the fixed set of σ^{-1}, so σ^{-1} fixes all but finitely many elements of X. Thus $\sigma^{-1} \in F$. We have shown that F is closed under the group operation of S_X and F is closed under inversion, so $\sigma \sigma^{-1} = 1 \in F$ as well. Thus $F \leq S_X$ as desired. \[\square\]

Problem 2: 2.56
Let G be a finite group with subgroups H, K. If $H \leq K$, prove that $|G : H| = |G : K||K : H|$.

Proof. By corollary 2.84:

$$|G : H| = \frac{|G|}{|H|} \quad |G : K| = \frac{|G|}{|K|} \quad |K : H| = \frac{|K|}{|H|}$$

Multiply $|G : K||K : H| = \frac{|G|}{|H|}$ and the identity is verified. \[\square\]

1 i.e. $\{x \in X : \sigma(x) = x\}$
Problem 3: 2.57
If H, K are subgroups of a group G and if $|H|, |K|$ are relatively prime, prove that $|H \cap K| = 1$.

Proof. Observe that $H \cap K$ is a subgroup of G by proposition 2.76. Then $H \cap K$ must also be a subgroup of H, K. Lagrange's theorem says that $|H \cap K|$ divides $|H|, |K|$. Since $|H|, |K|$ are relatively prime, their only common non-zero divisor is 1, so $|H \cap K| = 1$. □

Problem 4: 2.68
Prove a group G is abelian if and only if the map $f : G \rightarrow G$ defined by $f(a) = a^{-1}$ is a group homomorphism.

Proof. Suppose G is abelian and let $a, b \in A$. Then $f(ab) = b^{-1}a^{-1} = f(b)f(a) = f(a)f(b)$ since G is abelian. Thus f is a group homomorphism.

Conversely suppose that f is a homomorphism. Observe that $b^{-1}a^{-1} = f(ab) = f(a)f(b) = a^{-1}b^{-1}$. Inverting both sides, we obtain $ab = ba$, so G is abelian. □

Problem 5: 2.75
If G is a group and $a, b \in G$, prove that ab and ba have the same order.

Proof. Observe that:

$$ba = a^{-1}(ab)a$$

i.e. ba is a conjugate of ab. Thus by proposition 2.94, they have the same order (conjugate elements have the same order). □

Problem 6: 2.76
Prove the following:

i. Let $f : G \rightarrow H$ be a homomorphism and $x \in G$ have order k. Prove that $f(x) \in H$ has order m where $m|k$.

Proof. Observe first that if $(f(x))^k = f(x^k) = f(1) = 1$, so $f(x)$ has finite order $\leq k$. Let $m = |f(x)|$ and suppose that $m \nmid k$. Then there exists a non-zero remainder $r \in \mathbb{Z}$, $0 < r < k$ such that $k = qm + r$ for some $q \in \mathbb{Z}$. Thus $f(x)^k = (f(x)^m)^q f(x)^r = f(x)^r$ because $f(x)^m = 1$, but $f(x)^r \neq 1$ because $r < k < |f(x)|$, so we have a contradiction to the fact that $f(x)^k = 1$. Thus $m|k$. □

ii. Show that if $|G|, |H|$ are relatively prime, then the image of f is trivial.
Proof. Let \(x \in G \) so that \(f(x) \in H \) is an arbitrary element of the image of \(f \). Observe that \(\langle x \rangle \leq G \), so \(|x| = |\langle x \rangle| \) divides \(|G| \) by Lagrange’s theorem. By the preceding part, \(|f(x)| \) divides \(|x| \), so \(|f(x)| \) divides \(|G| \).

On the other hand, \((f(x)) \leq H \), so \(|f(x)| \) divides \(|H| \) by Lagrange’s theorem. Therefore \(|f(x)| \) divides both \(|G|, |H| \), so \(|f(x)| = 1 \) because \(|G|, |H| \) are relatively prime so that their only common divisor is 1. Thus \(f(x) = 1 \) because only the identity element has order 1. □

Problem 7:
Let \(G \) be an abelian group and \(f : S_3 \to G \) a homomorphism. Prove that \(\text{Im } f \leq 2 \).

Proof. Observe that if \(G \) is abelian with \(a, b \in G \), then \(ab = ba \iff aba^{-1}b^{-1} = 1_G \).\(^2\) Hence if \(x \in S_3 \) is of the form \(x = \alpha\beta\alpha^{-1}\beta^{-1} \) for \(\alpha, \beta \in S_3 \), we see that:
\[
f(\alpha\beta\alpha^{-1}\beta^{-1}) = f(\alpha)f(\beta)f(\alpha)^{-1}f(\beta)^{-1} = 1_G
\]
by properties of a homomorphism and the above mentioned property of the abelian group \(G \).

Observe now that:
\[
\]
so by the preceding, \((123), (132) \in \ker f \) and that \((1) \in \ker f \) by default, so \(|\ker f| = 3 \). At this point, you can check that \((12)(123) = (23) \) and \((12)(132) = (13) \) so that \(f(12) = f(23) \) and \(f(12) = f(13) \) because \((123), (132) \in \ker f \) and applying the properties of a homomorphism, so \(\text{Im } f \) consists exactly of \(\{1, f(12)\} \) which means that it must contain at most 2 elements.

A more elegant, motivated solution uses the first isomorphism theorem (2.116) which states that:
\[
\text{Im } f \cong S_3/\ker f
\]
so that by a corollary to Lagrange’s theorem:
\[
|\text{Im } f| = |S_3|/|\ker f| = 6/|\ker f| \leq 2
\]
because \(|\ker f| \geq 3 \). □

\(^2\)Note that we are using \(1_G \) to explicitly identify the identity in \(G \).